BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1260 related articles for article (PubMed ID: 15831059)

  • 1. The science of cycling: physiology and training - part 1.
    Faria EW; Parker DL; Faria IE
    Sports Med; 2005; 35(4):285-312. PubMed ID: 15831059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological differences between cycling and running: lessons from triathletes.
    Millet GP; Vleck VE; Bentley DJ
    Sports Med; 2009; 39(3):179-206. PubMed ID: 19290675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peak oxygen uptake in a sprint interval testing protocol vs. maximal oxygen uptake in an incremental testing protocol and their relationship with cross-country mountain biking performance.
    Hebisz R; Hebisz P; Zatoń M; Michalik K
    Appl Physiol Nutr Metab; 2017 Apr; 42(4):371-376. PubMed ID: 28177737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining explosive and high-resistance training improves performance in competitive cyclists.
    Paton CD; Hopkins WG
    J Strength Cond Res; 2005 Nov; 19(4):826-30. PubMed ID: 16287351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle.
    Abbiss CR; Karagounis LG; Laursen PB; Peiffer JJ; Martin DT; Hawley JA; Fatehee NN; Martin JC
    J Appl Physiol (1985); 2011 May; 110(5):1248-55. PubMed ID: 21330612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men.
    Ziemann E; Grzywacz T; Łuszczyk M; Laskowski R; Olek RA; Gibson AL
    J Strength Cond Res; 2011 Apr; 25(4):1104-12. PubMed ID: 20661160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Systematic Review of Submaximal Cycle Tests to Predict, Monitor, and Optimize Cycling Performance.
    Capostagno B; Lambert MI; Lamberts RP
    Int J Sports Physiol Perform; 2016 Sep; 11(6):707-714. PubMed ID: 27701968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applied physiology of triathlon.
    O'Toole ML; Douglas PS
    Sports Med; 1995 Apr; 19(4):251-67. PubMed ID: 7604198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term Periodization Models: Effects on Strength and Speed-strength Performance.
    Hartmann H; Wirth K; Keiner M; Mickel C; Sander A; Szilvas E
    Sports Med; 2015 Oct; 45(10):1373-86. PubMed ID: 26133514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes.
    Jacobs RA; Rasmussen P; Siebenmann C; Díaz V; Gassmann M; Pesta D; Gnaiger E; Nordsborg NB; Robach P; Lundby C
    J Appl Physiol (1985); 2011 Nov; 111(5):1422-30. PubMed ID: 21885805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists.
    Creer AR; Ricard MD; Conlee RK; Hoyt GL; Parcell AC
    Int J Sports Med; 2004 Feb; 25(2):92-8. PubMed ID: 14986190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can measures of critical power precisely estimate the maximal metabolic steady-state?
    Mattioni Maturana F; Keir DA; McLay KM; Murias JM
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1197-1203. PubMed ID: 27819154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency severe-intensity interval training improves cardiorespiratory functions.
    Nakahara H; Ueda SY; Miyamoto T
    Med Sci Sports Exerc; 2015 Apr; 47(4):789-98. PubMed ID: 25137370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of erythropoietin on cycling performance of well trained cyclists: a double-blind, randomised, placebo-controlled trial.
    Heuberger JAAC; Rotmans JI; Gal P; Stuurman FE; van 't Westende J; Post TE; Daniels JMA; Moerland M; van Veldhoven PLJ; de Kam ML; Ram H; de Hon O; Posthuma JJ; Burggraaf J; Cohen AF
    Lancet Haematol; 2017 Aug; 4(8):e374-e386. PubMed ID: 28669689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The science of cycling: factors affecting performance - part 2.
    Faria EW; Parker DL; Faria IE
    Sports Med; 2005; 35(4):313-37. PubMed ID: 15831060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.
    Parra J; Cadefau JA; Rodas G; Amigó N; Cussó R
    Acta Physiol Scand; 2000 Jun; 169(2):157-65. PubMed ID: 10848646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training induced decrease in oxygen cost of cycling is accompanied by down-regulation of SERCA expression in human vastus lateralis muscle.
    Majerczak J; Karasinski J; Zoladz JA
    J Physiol Pharmacol; 2008 Sep; 59(3):589-602. PubMed ID: 18953100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak power output, the lactate threshold, and time trial performance in cyclists.
    Bentley DJ; McNaughton LR; Thompson D; Vleck VE; Batterham AM
    Med Sci Sports Exerc; 2001 Dec; 33(12):2077-81. PubMed ID: 11740302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological profile of elite Bicycle Motocross cyclists and physiological-perceptual demands of a Bicycle Motocross race simulation.
    Petruolo A; Connolly DR; Bosio A; Induni M; Rampinini E
    J Sports Med Phys Fitness; 2020 Sep; 60(9):1173-1184. PubMed ID: 32406391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 63.