BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15831460)

  • 1. Identification in vivo of different rate-limiting steps associated with transcriptional activators in the presence and absence of a GAGA element.
    Wang YV; Tang H; Gilmour DS
    Mol Cell Biol; 2005 May; 25(9):3543-52. PubMed ID: 15831460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites.
    Shopland LS; Hirayoshi K; Fernandes M; Lis JT
    Genes Dev; 1995 Nov; 9(22):2756-69. PubMed ID: 7590251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative and competitive protein interactions at the hsp70 promoter.
    Mason PB; Lis JT
    J Biol Chem; 1997 Dec; 272(52):33227-33. PubMed ID: 9407112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila.
    Lee C; Li X; Hechmer A; Eisen M; Biggin MD; Venters BJ; Jiang C; Li J; Pugh BF; Gilmour DS
    Mol Cell Biol; 2008 May; 28(10):3290-300. PubMed ID: 18332113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular architecture of the hsp70 promoter after deletion of the TATA box or the upstream regulation region.
    Weber JA; Taxman DJ; Lu Q; Gilmour DS
    Mol Cell Biol; 1997 Jul; 17(7):3799-808. PubMed ID: 9199313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock.
    Boehm AK; Saunders A; Werner J; Lis JT
    Mol Cell Biol; 2003 Nov; 23(21):7628-37. PubMed ID: 14560008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic footprinting of the hsp70 and histone H3 promoters in Drosophila embryos reveals novel protein-DNA interactions.
    Weber JA; Gilmour DS
    Nucleic Acids Res; 1995 Aug; 23(16):3327-34. PubMed ID: 7667110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of GAGA protein on Drosophila genes in vivo.
    O'Brien T; Wilkins RC; Giardina C; Lis JT
    Genes Dev; 1995 May; 9(9):1098-110. PubMed ID: 7744251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoter elements associated with RNA Pol II stalling in the Drosophila embryo.
    Hendrix DA; Hong JW; Zeitlinger J; Rokhsar DS; Levine MS
    Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7762-7. PubMed ID: 18505835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional activation domains stimulate initiation and elongation at different times and via different residues.
    Brown SA; Weirich CS; Newton EM; Kingston RE
    EMBO J; 1998 Jun; 17(11):3146-54. PubMed ID: 9606196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of promoter-proximal pausing by RNA polymerase II on the hsp70 heat shock gene promoter in a Drosophila nuclear extract.
    Li B; Weber JA; Chen Y; Greenleaf AL; Gilmour DS
    Mol Cell Biol; 1996 Oct; 16(10):5433-43. PubMed ID: 8816456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA sequence requirements for generating paused polymerase at the start of hsp70.
    Lee H; Kraus KW; Wolfner MF; Lis JT
    Genes Dev; 1992 Feb; 6(2):284-95. PubMed ID: 1737619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast.
    Keaveney M; Struhl K
    Mol Cell; 1998 May; 1(6):917-24. PubMed ID: 9660975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoter-proximal pausing on the hsp70 promoter in Drosophila melanogaster depends on the upstream regulator.
    Tang H; Liu Y; Madabusi L; Gilmour DS
    Mol Cell Biol; 2000 Apr; 20(7):2569-80. PubMed ID: 10713179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative elongation factor accelerates the rate at which heat shock genes are shut off by facilitating dissociation of heat shock factor.
    Ghosh SK; Missra A; Gilmour DS
    Mol Cell Biol; 2011 Oct; 31(20):4232-43. PubMed ID: 21859888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin potentiation of the hsp70 promoter is linked to GAGA-factor recruitment.
    Georgel PT
    Biochem Cell Biol; 2005 Aug; 83(4):555-65. PubMed ID: 16094459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic activation of transcription by the mutant and wild-type minimal transcriptional activation domain of VP16.
    Ghosh S; Toth C; Peterlin BM; Seto E
    J Biol Chem; 1996 Apr; 271(17):9911-8. PubMed ID: 8626627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock.
    Achary BG; Campbell KM; Co IS; Gilmour DS
    Biochim Biophys Acta; 2014 May; 1839(5):355-63. PubMed ID: 24607507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.