These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 15832301)
1. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels. Conlisk AT Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301 [TBL] [Abstract][Full Text] [Related]
2. Mass transfer and flow in electrically charged micro- and nanochannels. Conlisk AT; McFerran J; Zheng Z; Hansford D Anal Chem; 2002 May; 74(9):2139-50. PubMed ID: 12033318 [TBL] [Abstract][Full Text] [Related]
3. Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Zheng Z; Hansford DJ; Conlisk AT Electrophoresis; 2003 Sep; 24(17):3006-17. PubMed ID: 12973804 [TBL] [Abstract][Full Text] [Related]
4. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303 [TBL] [Abstract][Full Text] [Related]
5. Starting electroosmotic flow in an annulus and in a rectangular channel. Chang CC; Wang CY Electrophoresis; 2008 Jul; 29(14):2970-9. PubMed ID: 18655036 [TBL] [Abstract][Full Text] [Related]
6. Flow behavior of periodical electroosmosis in microchannel for biochips. Wang X; Wu J J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240 [TBL] [Abstract][Full Text] [Related]
7. Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength. Chen L; Conlisk AT Biomed Microdevices; 2009 Feb; 11(1):251-8. PubMed ID: 18850273 [TBL] [Abstract][Full Text] [Related]
8. Electrokinetic transport in nanochannels. 1. Theory. Pennathur S; Santiago JG Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573 [TBL] [Abstract][Full Text] [Related]
9. Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium. Baldessari F; Santiago JG J Colloid Interface Sci; 2008 Sep; 325(2):526-38. PubMed ID: 18639883 [TBL] [Abstract][Full Text] [Related]
10. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers. Chen L; Conlisk AT Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305 [TBL] [Abstract][Full Text] [Related]
11. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory. Datta S; Ghosal S; Patankar NA Electrophoresis; 2006 Feb; 27(3):611-9. PubMed ID: 16456890 [TBL] [Abstract][Full Text] [Related]
12. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution. Chang CC; Kuo CY; Wang CY Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500 [TBL] [Abstract][Full Text] [Related]
13. ac electroosmosis in rectangular microchannels. Campisi M; Accoto D; Dario P J Chem Phys; 2005 Nov; 123(20):204724. PubMed ID: 16351310 [TBL] [Abstract][Full Text] [Related]
14. Diffusioosmotic flows in slit nanochannels. Qian S; Das B; Luo X J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599 [TBL] [Abstract][Full Text] [Related]
15. Generation of directional EOF by interactive oscillatory zeta potential. Kuo CY; Wang CY; Chang CC Electrophoresis; 2008 Nov; 29(21):4386-90. PubMed ID: 18942675 [TBL] [Abstract][Full Text] [Related]
16. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Kirby BJ; Hasselbrink EF Electrophoresis; 2004 Jan; 25(2):187-202. PubMed ID: 14743473 [TBL] [Abstract][Full Text] [Related]
17. Electrokinetic pumping and detection of low-volume flows in nanochannels. Mela P; Tas NR; Berenschot EJ; van Nieuwkasteele J; van den Berg A Electrophoresis; 2004 Nov; 25(21-22):3687-93. PubMed ID: 15565691 [TBL] [Abstract][Full Text] [Related]
18. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. Yan D; Nguyen NT; Yang C; Huang X J Chem Phys; 2006 Jan; 124(2):021103. PubMed ID: 16422562 [TBL] [Abstract][Full Text] [Related]
19. Optimization of charged species separation by autogenous electric field-flow fractionation in nano-scale channels. Griffiths SK; Nilson RH Electrophoresis; 2010 Mar; 31(5):832-42. PubMed ID: 20191545 [TBL] [Abstract][Full Text] [Related]
20. Ionic dispersion in nanofluidics. De Leebeeck A; Sinton D Electrophoresis; 2006 Dec; 27(24):4999-5008. PubMed ID: 17117385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]