These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 15832908)
1. Concept for a laser guide beacon Shack-Hartmann wave-front sensor with dynamically steered subapertures. Baranec CJ; Bauman BJ; Lloyd-Hart M Opt Lett; 2005 Apr; 30(7):693-5. PubMed ID: 15832908 [TBL] [Abstract][Full Text] [Related]
2. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics. Baranec C; Dekany R Appl Opt; 2008 Oct; 47(28):5155-62. PubMed ID: 18830305 [TBL] [Abstract][Full Text] [Related]
3. Wave-front sensing from subdivision of the focal plane with a lenslet array. Clare RM; Lane RG J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):117-25. PubMed ID: 15669622 [TBL] [Abstract][Full Text] [Related]
4. Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor. Nirmaier T; Pudasaini G; Bille J Opt Express; 2003 Oct; 11(21):2704-16. PubMed ID: 19471385 [TBL] [Abstract][Full Text] [Related]
5. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device. Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885 [TBL] [Abstract][Full Text] [Related]
6. Algorithm to increase the largest aberration that can be reconstructed from Hartmann sensor measurements. Roggemann MC; Schulz TJ Appl Opt; 1998 Jul; 37(20):4321-9. PubMed ID: 18285881 [TBL] [Abstract][Full Text] [Related]
7. Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Yoon GY; Jitsuno T; Nakatsuka M; Nakai S Appl Opt; 1996 Jan; 35(1):188-92. PubMed ID: 21068997 [TBL] [Abstract][Full Text] [Related]
14. Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation. Montera DA; Welsh BM; Roggemann MC; Ruck DW Appl Opt; 1996 Oct; 35(29):5747-57. PubMed ID: 21127584 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor. Mansell JD; Hennawi J; Gustafson EK; Fejer MM; Byer RL; Clubley D; Yoshida S; Reitze DH Appl Opt; 2001 Jan; 40(3):366-74. PubMed ID: 18357010 [TBL] [Abstract][Full Text] [Related]
16. Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation. Zhu L; Sun PC; Bartsch DU; Freeman WR; Fainman Y Appl Opt; 1999 Jan; 38(1):168-76. PubMed ID: 18305600 [TBL] [Abstract][Full Text] [Related]
17. Piston and tilt cophasing of segmented laser array using Shack-Hartmann sensor. Wang X; Fu Q; Shen F; Rao C Opt Express; 2012 Feb; 20(4):4663-74. PubMed ID: 22418223 [TBL] [Abstract][Full Text] [Related]
18. Mitigation of truncation effects in elongated Shack-Hartmann laser guide star wavefront sensor images. Clare RM; Weddell SJ; Le Louarn M Appl Opt; 2020 Aug; 59(22):6431-6442. PubMed ID: 32749340 [TBL] [Abstract][Full Text] [Related]
19. Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications. Koch JA; Presta RW; Sacks RA; Zacharias RA; Bliss ES; Dailey MJ; Feldman M; Grey AA; Holdener FR; Salmon JT; Seppala LG; Toeppen JS; Van Atta L; Van Wonterghem BM; Whistler WT; Winters SE; Woods BW Appl Opt; 2000 Sep; 39(25):4540-6. PubMed ID: 18350042 [TBL] [Abstract][Full Text] [Related]
20. Experimental results of ground-layer and tomographic wavefront reconstruction from multiple laser guide stars. Lloyd-Hart M; Baranec C; Milton NM; Snyder M; Stalcup T; Angel JR Opt Express; 2006 Aug; 14(17):7541-51. PubMed ID: 19529120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]