BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15832926)

  • 1. Imaging magnetically labeled cells with magnetomotive optical coherence tomography.
    Oldenburg AL; Gunther JR; Boppart SA
    Opt Lett; 2005 Apr; 30(7):747-9. PubMed ID: 15832926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of nanoparticle-labeled stem cells using magnetomotive optical coherence tomography, laser speckle reflectometry, and light microscopy.
    Cimalla P; Werner T; Winkler K; Mueller C; Wicht S; Gaertner M; Mehner M; Walther J; Rellinghaus B; Wittig D; Karl MO; Ader M; Funk RH; Koch E
    J Biomed Opt; 2015 Mar; 20(3):036018. PubMed ID: 25822955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic and contrast properties of labeled platelets for magnetomotive optical coherence tomography.
    Oldenburg AL; Gallippi CM; Tsui F; Nichols TC; Beicker KN; Chhetri RK; Spivak D; Richardson A; Fischer TH
    Biophys J; 2010 Oct; 99(7):2374-83. PubMed ID: 20923673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volumetric full-range magnetomotive optical coherence tomography.
    Ahmad A; Kim J; Shemonski ND; Marjanovic M; Boppart SA
    J Biomed Opt; 2014 Dec; 19(12):126001. PubMed ID: 25472770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin contrast in magnetomotive optical Doppler tomography.
    Kim J; Oh J; Milner TE; Nelson JS
    Opt Lett; 2006 Mar; 31(6):778-80. PubMed ID: 16544621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques.
    Ariza de Schellenberger A; Poller WC; Stangl V; Landmesser U; Schellenberger E
    Int J Nanomedicine; 2018; 13():7905-7913. PubMed ID: 30538467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids.
    Kim J; Ahmad A; Boppart SA
    Opt Express; 2013 Mar; 21(6):7139-47. PubMed ID: 23546097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues.
    Oldenburg AL; Crecea V; Rinne SA; Boppart SA
    Opt Express; 2008 Jul; 16(15):11525-39. PubMed ID: 18648474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of magnetic particles in live DBA/2J mouse eyes using magnetomotive optical coherence tomography.
    Wang J; Wang MR; Jiang H; Shen M; Cui L; Bhattacharya SK
    Eye Contact Lens; 2010 Nov; 36(6):346-51. PubMed ID: 21060257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Positive contrast in the detection of magnetically labeled cells by MRI--in vitro experiments].
    Pintaske J; Martirosian P; Claussen CD; Schick F
    Biomed Tech (Berl); 2005 Sep; 50(9):271-6. PubMed ID: 16185035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common-path-based device for magnetomotive OCT noise reduction.
    Ma Z; Liu X; Yin B; Zhao Y; Liu J; Yu Y; Wang Y
    Appl Opt; 2020 Feb; 59(5):1431-1437. PubMed ID: 32225400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography.
    Oh J; Feldman MD; Kim J; Sanghi P; Do D; Mancuso JJ; Kemp N; Cilingiroglu M; Milner TE
    J Biomed Opt; 2008; 13(5):054006. PubMed ID: 19021386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes.
    John R; Rezaeipoor R; Adie SG; Chaney EJ; Oldenburg AL; Marjanovic M; Haldar JP; Sutton BP; Boppart SA
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8085-90. PubMed ID: 20404194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High precision dynamic multi-interface profilometry with optical coherence tomography.
    Lawman S; Liang H
    Appl Opt; 2011 Nov; 50(32):6039-48. PubMed ID: 22083374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophagic enhancement in optical coherence tomography imaging by means of superparamagnetic iron oxide nanoparticles.
    Gutiérrez-Chico JL; Jaguszewski M; Comesaña-Hermo M; Correa-Duarte MÁ; Mariñas-Pardo L; Hermida-Prieto M
    Cardiol J; 2017; 24(5):459-466. PubMed ID: 28497842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal-to-noise ratio study of full-field fourier-domain optical coherence tomography.
    Blazkiewicz P; Gourlay M; Tucker JR; Rakic AD; Zvyagin AV
    Appl Opt; 2005 Dec; 44(36):7722-9. PubMed ID: 16381518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-resolution full-field optical coherence tomography.
    Dubois A; Grieve K; Moneron G; Lecaque R; Vabre L; Boccara C
    Appl Opt; 2004 May; 43(14):2874-83. PubMed ID: 15143811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-comb-based interferometer for profilometry and tomography.
    Choi S; Yamamoto M; Moteki D; Shioda T; Tanaka Y; Kurokawa T
    Opt Lett; 2006 Jul; 31(13):1976-8. PubMed ID: 16770404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways.
    Lau B; McLaughlin RA; Curatolo A; Kirk RW; Gerstmann DK; Sampson DD
    Opt Express; 2010 Dec; 18(26):27173-80. PubMed ID: 21196994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetomotive molecular nanoprobes.
    John R; Boppart SA
    Curr Med Chem; 2011; 18(14):2103-14. PubMed ID: 21517766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.