These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 15833442)

  • 1. A deterministic algorithm for constrained enumeration of transmembrane protein folds.
    Brown WM; Faulon JL; Sale K
    Comput Biol Chem; 2005 Apr; 29(2):143-50. PubMed ID: 15833442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the conformational space of membrane protein folds matching distance constraints.
    Faulon JL; Sale K; Young M
    Protein Sci; 2003 Aug; 12(8):1750-61. PubMed ID: 12876324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potential smoothing algorithm accurately predicts transmembrane helix packing.
    Pappu RV; Marshall GR; Ponder JW
    Nat Struct Biol; 1999 Jan; 6(1):50-5. PubMed ID: 9886292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The study of protein folding and dynamics by determination of intramolecular distance distributions and their fluctuations using ensemble and single-molecule FRET measurements.
    Haas E
    Chemphyschem; 2005 May; 6(5):858-70. PubMed ID: 15884068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helix-bundle membrane protein fold templates.
    Bowie JU
    Protein Sci; 1999 Dec; 8(12):2711-9. PubMed ID: 10631987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of helical membrane protein topology using residual dipolar couplings and exhaustive search algorithm: application to phospholamban.
    Mascioni A; Eggimann BL; Veglia G
    Chem Phys Lipids; 2004 Nov; 132(1):133-44. PubMed ID: 15530454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal bundling of transmembrane helices using sparse distance constraints.
    Sale K; Faulon JL; Gray GA; Schoeniger JS; Young MM
    Protein Sci; 2004 Oct; 13(10):2613-27. PubMed ID: 15340162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the local conformational space of a membrane protein by site-directed spin labeling.
    Stopar D; Strancar J; Spruijt RB; Hemminga MA
    J Chem Inf Model; 2005; 45(6):1621-7. PubMed ID: 16309264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta-Barrel transmembrane proteins: Geometric modelling, detection of transmembrane region, and structural properties.
    Valavanis IK; Bagos PG; Emiris IZ
    Comput Biol Chem; 2006 Dec; 30(6):416-24. PubMed ID: 17097352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriorhodopsin folds into the membrane against an external force.
    Kessler M; Gottschalk KE; Janovjak H; Muller DJ; Gaub HE
    J Mol Biol; 2006 Mar; 357(2):644-54. PubMed ID: 16434052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the fold space of membrane proteins: the CAMPS database.
    Martin-Galiano AJ; Frishman D
    Proteins; 2006 Sep; 64(4):906-22. PubMed ID: 16802318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global hairpin folding of tau in solution.
    Jeganathan S; von Bergen M; Brutlach H; Steinhoff HJ; Mandelkow E
    Biochemistry; 2006 Feb; 45(7):2283-93. PubMed ID: 16475817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling membrane proteins based on low-resolution electron microscopy maps: a template for the TM domains of the oxalate transporter OxlT.
    Beuming T; Weinstein H
    Protein Eng Des Sel; 2005 Mar; 18(3):119-25. PubMed ID: 15820982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIPATH: an optimized algorithm for generating alpha-helical structures from PISEMA data.
    Asbury T; Quine JR; Achuthan S; Hu J; Chapman MS; Cross TA; Bertram R
    J Magn Reson; 2006 Nov; 183(1):87-95. PubMed ID: 16914335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational design of a single amino acid sequence that can switch between two distinct protein folds.
    Ambroggio XI; Kuhlman B
    J Am Chem Soc; 2006 Feb; 128(4):1154-61. PubMed ID: 16433531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin label EPR-based characterization of biosystem complexity.
    Strancar J; Koklic T; Arsov Z; Filipic B; Stopar D; Hemminga MA
    J Chem Inf Model; 2005; 45(2):394-406. PubMed ID: 15807505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exhaustive enumeration of protein conformations using experimental restraints.
    DeWitte RS; Michnick SW; Shakhnovich EI
    Protein Sci; 1995 Sep; 4(9):1780-91. PubMed ID: 8528076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo folding of trans-membrane helical peptides in an implicit generalized Born membrane.
    Ulmschneider JP; Ulmschneider MB; Di Nola A
    Proteins; 2007 Nov; 69(2):297-308. PubMed ID: 17600830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.