BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15833662)

  • 1. Electroformation of giant liposomes from spin-coated films of lipids.
    Estes DJ; Mayer M
    Colloids Surf B Biointerfaces; 2005 May; 42(2):115-23. PubMed ID: 15833662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM characterization of spin-coated multilayered dry lipid films prepared from aqueous vesicle suspensions.
    Krapf L; Dezi M; Reichstein W; Köhler J; Oellerich S
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):25-32. PubMed ID: 20832257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength.
    Horger KS; Estes DJ; Capone R; Mayer M
    J Am Chem Soc; 2009 Feb; 131(5):1810-9. PubMed ID: 19154115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient electroformation of supergiant unilamellar vesicles containing cationic lipids on ITO-coated electrodes.
    Herold C; Chwastek G; Schwille P; Petrov EP
    Langmuir; 2012 Apr; 28(13):5518-21. PubMed ID: 22424289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant liposomes in physiological buffer using electroformation in a flow chamber.
    Estes DJ; Mayer M
    Biochim Biophys Acta; 2005 Jun; 1712(2):152-60. PubMed ID: 15890312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy.
    Rodriguez N; Pincet F; Cribier S
    Colloids Surf B Biointerfaces; 2005 May; 42(2):125-30. PubMed ID: 15833663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AC-electric field dependent electroformation of giant lipid vesicles.
    Politano TJ; Froude VE; Jing B; Zhu Y
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triggering and visualizing the aggregation and fusion of lipid membranes in microfluidic chambers.
    Estes DJ; Lopez SR; Fuller AO; Mayer M
    Biophys J; 2006 Jul; 91(1):233-43. PubMed ID: 16617088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation.
    Boban Z; Puljas A; Kovač D; Subczynski WK; Raguz M
    Cell Biochem Biophys; 2020 Jun; 78(2):157-164. PubMed ID: 32319021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar.
    Tsumoto K; Matsuo H; Tomita M; Yoshimura T
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):98-105. PubMed ID: 18993037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically induced deformation of giant liposomes monitored by thickness shear mode resonators.
    Sapper A; Janshoff A
    Langmuir; 2006 Dec; 22(26):10869-73. PubMed ID: 17154553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope.
    Akashi K; Miyata H; Itoh H; Kinosita K
    Biophys J; 1996 Dec; 71(6):3242-50. PubMed ID: 8968594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods.
    Kılıç A; Fazeli Jadidi M; Özer HÖ; Kök FN
    Colloids Surf B Biointerfaces; 2017 Dec; 160():117-125. PubMed ID: 28918188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous monitoring of electroformation of phospholipid vesicles by quartz crystal microbalance and optical microscopy.
    Niri VH; Flatt BK; Fakhraai Z; Forrest JA
    Chem Phys Lipids; 2010 Jan; 163(1):36-41. PubMed ID: 19883636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of supported lipid bilayers on indium tin oxide for dynamically-patterned membrane-functionalized microelectrode arrays.
    Kumar K; Tang CS; Rossetti FF; Textor M; Keller B; Vörös J; Reimhult E
    Lab Chip; 2009 Mar; 9(5):718-25. PubMed ID: 19224023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroformation of giant vesicles on a non-electroconductive substrate.
    Okumura Y; Zhang H; Sugiyama T; Iwata Y
    J Am Chem Soc; 2007 Feb; 129(6):1490-1. PubMed ID: 17283981
    [No Abstract]   [Full Text] [Related]  

  • 19. Hybrid giant lipid vesicles incorporating a PMMA-based copolymer.
    Miele Y; Mingotaud AF; Caruso E; Malacarne MC; Izzo L; Lonetti B; Rossi F
    Biochim Biophys Acta Gen Subj; 2021 Apr; 1865(4):129611. PubMed ID: 32272202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM characterization of solid-supported lipid multilayers prepared by spin-coating.
    Pompeo G; Girasole M; Cricenti A; Cattaruzza F; Flamini A; Prosperi T; Generosi J; Castellano AC
    Biochim Biophys Acta; 2005 Jun; 1712(1):29-36. PubMed ID: 15869743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.