BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15833745)

  • 1. Monoclonal antibody epitope mapping describes tailspike beta-helix folding and aggregation intermediates.
    Jain M; Evans MS; King J; Clark PL
    J Biol Chem; 2005 Jun; 280(24):23032-40. PubMed ID: 15833745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies.
    Friguet B; Djavadi-Ohaniance L; King J; Goldberg ME
    J Biol Chem; 1994 Jun; 269(22):15945-9. PubMed ID: 7515066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates.
    Clark PL; King J
    J Biol Chem; 2001 Jul; 276(27):25411-20. PubMed ID: 11319217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of monoclonal antibodies selected for probing the conformation of wild type and mutant forms of the P22 tailspike endorhamnosidase.
    Friguet B; Djavadi-Ohaniance L; Haase-Pettingell CA; King J; Goldberg ME
    J Biol Chem; 1990 Jun; 265(18):10347-51. PubMed ID: 2141331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity and steric strain in a parallel beta-helix: rational mutations in the P22 tailspike protein.
    Schuler B; Fürst F; Osterroth F; Steinbacher S; Huber R; Seckler R
    Proteins; 2000 Apr; 39(1):89-101. PubMed ID: 10737931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies.
    Speed MA; Morshead T; Wang DI; King J
    Protein Sci; 1997 Jan; 6(1):99-108. PubMed ID: 9007981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.
    Evans MS; Sander IM; Clark PL
    J Mol Biol; 2008 Nov; 383(3):683-92. PubMed ID: 18674543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the protrimer intermediate in the folding pathway of the interdigitated beta-helix tailspike protein.
    Benton CB; King J; Clark PL
    Biochemistry; 2002 Apr; 41(16):5093-103. PubMed ID: 11955057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations that stabilize folding intermediates of phage P22 tailspike protein: folding in vivo and in vitro, stability, and structural context.
    Beissinger M; Lee SC; Steinbacher S; Reinemer P; Huber R; Yu MH; Seckler R
    J Mol Biol; 1995 May; 249(1):185-94. PubMed ID: 7776371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P22 tailspike folding mutants revisited: effects on the thermodynamic stability of the isolated beta-helix domain.
    Schuler B; Seckler R
    J Mol Biol; 1998 Aug; 281(2):227-34. PubMed ID: 9698543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutralization of NGF-TrkA receptor interaction by the novel antagonistic anti-TrkA monoclonal antibody MNAC13: a structural insight.
    Covaceuszach S; Cattaneo A; Lamba D
    Proteins; 2005 Feb; 58(3):717-27. PubMed ID: 15625712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reversibly unfolding fragment of P22 tailspike protein with native structure: the isolated beta-helix domain.
    Miller S; Schuler B; Seckler R
    Biochemistry; 1998 Jun; 37(25):9160-8. PubMed ID: 9636063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein.
    Seckler R
    J Struct Biol; 1998; 122(1-2):216-22. PubMed ID: 9724623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure dissociation studies provide insight into oligomerization competence of temperature-sensitive folding mutants of P22 tailspike.
    Lefebvre BG; Comolli NK; Gage MJ; Robinson AS
    Protein Sci; 2004 Jun; 13(6):1538-46. PubMed ID: 15133163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer.
    Steinbacher S; Seckler R; Miller S; Steipe B; Huber R; Reinemer P
    Science; 1994 Jul; 265(5170):383-6. PubMed ID: 8023158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invivo folding efficiencies for mutants of the P22 tailspike beta-helix protein correlate with predicted stability changes.
    Reich L; Becker M; Seckler R; Weikl TR
    Biophys Chem; 2009 May; 141(2-3):186-92. PubMed ID: 19254821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-terminal hydrophobic interactions play a critical role in oligomeric assembly of the P22 tailspike trimer.
    Gage MJ; Robinson AS
    Protein Sci; 2003 Dec; 12(12):2732-47. PubMed ID: 14627734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol.
    Mishra R; Bhat R; Seckler R
    Biol Chem; 2007 Aug; 388(8):797-804. PubMed ID: 17655498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states.
    Spatara ML; Roberts CJ; Robinson AS
    Biophys Chem; 2009 May; 141(2-3):214-21. PubMed ID: 19258192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation.
    Haase-Pettingell CA; King J
    J Biol Chem; 1988 Apr; 263(10):4977-83. PubMed ID: 2965152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.