These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 15833745)
1. Monoclonal antibody epitope mapping describes tailspike beta-helix folding and aggregation intermediates. Jain M; Evans MS; King J; Clark PL J Biol Chem; 2005 Jun; 280(24):23032-40. PubMed ID: 15833745 [TBL] [Abstract][Full Text] [Related]
2. In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies. Friguet B; Djavadi-Ohaniance L; King J; Goldberg ME J Biol Chem; 1994 Jun; 269(22):15945-9. PubMed ID: 7515066 [TBL] [Abstract][Full Text] [Related]
3. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. Clark PL; King J J Biol Chem; 2001 Jul; 276(27):25411-20. PubMed ID: 11319217 [TBL] [Abstract][Full Text] [Related]
4. Properties of monoclonal antibodies selected for probing the conformation of wild type and mutant forms of the P22 tailspike endorhamnosidase. Friguet B; Djavadi-Ohaniance L; Haase-Pettingell CA; King J; Goldberg ME J Biol Chem; 1990 Jun; 265(18):10347-51. PubMed ID: 2141331 [TBL] [Abstract][Full Text] [Related]
5. Plasticity and steric strain in a parallel beta-helix: rational mutations in the P22 tailspike protein. Schuler B; Fürst F; Osterroth F; Steinbacher S; Huber R; Seckler R Proteins; 2000 Apr; 39(1):89-101. PubMed ID: 10737931 [TBL] [Abstract][Full Text] [Related]
6. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Speed MA; Morshead T; Wang DI; King J Protein Sci; 1997 Jan; 6(1):99-108. PubMed ID: 9007981 [TBL] [Abstract][Full Text] [Related]
7. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo. Evans MS; Sander IM; Clark PL J Mol Biol; 2008 Nov; 383(3):683-92. PubMed ID: 18674543 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the protrimer intermediate in the folding pathway of the interdigitated beta-helix tailspike protein. Benton CB; King J; Clark PL Biochemistry; 2002 Apr; 41(16):5093-103. PubMed ID: 11955057 [TBL] [Abstract][Full Text] [Related]
9. Mutations that stabilize folding intermediates of phage P22 tailspike protein: folding in vivo and in vitro, stability, and structural context. Beissinger M; Lee SC; Steinbacher S; Reinemer P; Huber R; Yu MH; Seckler R J Mol Biol; 1995 May; 249(1):185-94. PubMed ID: 7776371 [TBL] [Abstract][Full Text] [Related]
10. P22 tailspike folding mutants revisited: effects on the thermodynamic stability of the isolated beta-helix domain. Schuler B; Seckler R J Mol Biol; 1998 Aug; 281(2):227-34. PubMed ID: 9698543 [TBL] [Abstract][Full Text] [Related]
11. Neutralization of NGF-TrkA receptor interaction by the novel antagonistic anti-TrkA monoclonal antibody MNAC13: a structural insight. Covaceuszach S; Cattaneo A; Lamba D Proteins; 2005 Feb; 58(3):717-27. PubMed ID: 15625712 [TBL] [Abstract][Full Text] [Related]
12. A reversibly unfolding fragment of P22 tailspike protein with native structure: the isolated beta-helix domain. Miller S; Schuler B; Seckler R Biochemistry; 1998 Jun; 37(25):9160-8. PubMed ID: 9636063 [TBL] [Abstract][Full Text] [Related]
13. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein. Seckler R J Struct Biol; 1998; 122(1-2):216-22. PubMed ID: 9724623 [TBL] [Abstract][Full Text] [Related]
14. Pressure dissociation studies provide insight into oligomerization competence of temperature-sensitive folding mutants of P22 tailspike. Lefebvre BG; Comolli NK; Gage MJ; Robinson AS Protein Sci; 2004 Jun; 13(6):1538-46. PubMed ID: 15133163 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Steinbacher S; Seckler R; Miller S; Steipe B; Huber R; Reinemer P Science; 1994 Jul; 265(5170):383-6. PubMed ID: 8023158 [TBL] [Abstract][Full Text] [Related]
16. Invivo folding efficiencies for mutants of the P22 tailspike beta-helix protein correlate with predicted stability changes. Reich L; Becker M; Seckler R; Weikl TR Biophys Chem; 2009 May; 141(2-3):186-92. PubMed ID: 19254821 [TBL] [Abstract][Full Text] [Related]
17. C-terminal hydrophobic interactions play a critical role in oligomeric assembly of the P22 tailspike trimer. Gage MJ; Robinson AS Protein Sci; 2003 Dec; 12(12):2732-47. PubMed ID: 14627734 [TBL] [Abstract][Full Text] [Related]
18. Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol. Mishra R; Bhat R; Seckler R Biol Chem; 2007 Aug; 388(8):797-804. PubMed ID: 17655498 [TBL] [Abstract][Full Text] [Related]
19. Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states. Spatara ML; Roberts CJ; Robinson AS Biophys Chem; 2009 May; 141(2-3):214-21. PubMed ID: 19258192 [TBL] [Abstract][Full Text] [Related]
20. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. Haase-Pettingell CA; King J J Biol Chem; 1988 Apr; 263(10):4977-83. PubMed ID: 2965152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]