BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15833745)

  • 21. Unfolding/refolding studies on bovine beta-lactoglobulin with monoclonal antibodies as probes. Does a renatured protein completely refold?
    Hattori M; Ametani A; Katakura Y; Shimizu M; Kaminogawa S
    J Biol Chem; 1993 Oct; 268(30):22414-9. PubMed ID: 7693669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. P22 tailspike trimer assembly is governed by interchain redox associations.
    Danek BL; Robinson AS
    Biochim Biophys Acta; 2004 Jul; 1700(1):105-16. PubMed ID: 15210130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase.
    Haase-Pettingell C; King J
    J Mol Biol; 1997 Mar; 267(1):88-102. PubMed ID: 9096209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of fibrous aggregates from a non-native intermediate: the isolated P22 tailspike beta-helix domain.
    Schuler B; Rachel R; Seckler R
    J Biol Chem; 1999 Jun; 274(26):18589-96. PubMed ID: 10373469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide.
    Sather SK; King J
    J Biol Chem; 1994 Oct; 269(41):25268-76. PubMed ID: 7929218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid refolding of native epitopes on the surface of cytochrome c.
    Allen MJ; Jemmerson R; Nall BT
    Biochemistry; 1994 Apr; 33(13):3967-73. PubMed ID: 7511412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induced fit of an epitope peptide to a monoclonal antibody probed with a novel parallel surface plasmon resonance assay.
    Baggio R; Carven GJ; Chiulli A; Palmer M; Stern LJ; Arenas JE
    J Biol Chem; 2005 Feb; 280(6):4188-94. PubMed ID: 15556932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of phage P22 tailspike protein folding mutations.
    Danner M; Seckler R
    Protein Sci; 1993 Nov; 2(11):1869-81. PubMed ID: 8268798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization.
    Kreisberg JF; Betts SD; Haase-Pettingell C; King J
    Protein Sci; 2002 Apr; 11(4):820-30. PubMed ID: 11910025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation.
    Betts SD; King J
    Protein Sci; 1998 Jul; 7(7):1516-23. PubMed ID: 9684883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Side-chain specificity at three temperature-sensitive folding mutation sites of P22 tailspike protein.
    Lee SC; Yu MH
    Biochem Biophys Res Commun; 1997 Apr; 233(3):857-62. PubMed ID: 9168948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly.
    Takata T; Haase-Pettingell C; King J
    Bacteriophage; 2012 Jan; 2(1):36-49. PubMed ID: 22666655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain.
    Danner M; Fuchs A; Miller S; Seckler R
    Eur J Biochem; 1993 Aug; 215(3):653-61. PubMed ID: 8354271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of monoclonal antibodies specific for protein conformational epitopes present in prostate-specific membrane antigen (PSMA).
    Tino WT; Huber MJ; Lake TP; Greene TG; Murphy GP; Holmes EH
    Hybridoma; 2000 Jun; 19(3):249-57. PubMed ID: 10952413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary structure and thermostability of the phage P22 tailspike. XX. Analysis by Raman spectroscopy of the wild-type protein and a temperature-sensitive folding mutant.
    Sargent D; Benevides JM; Yu MH; King J; Thomas GJ
    J Mol Biol; 1988 Feb; 199(3):491-502. PubMed ID: 2965250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro.
    Mitraki A; Danner M; King J; Seckler R
    J Biol Chem; 1993 Sep; 268(27):20071-5. PubMed ID: 8376364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related.
    Barbirz S; Müller JJ; Uetrecht C; Clark AJ; Heinemann U; Seckler R
    Mol Microbiol; 2008 Jul; 69(2):303-16. PubMed ID: 18547389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro folding pathway of phage P22 tailspike protein.
    Fuchs A; Seiderer C; Seckler R
    Biochemistry; 1991 Jul; 30(26):6598-604. PubMed ID: 1828991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein.
    Sturtevant JM; Yu MH; Haase-Pettingell C; King J
    J Biol Chem; 1989 Jun; 264(18):10693-8. PubMed ID: 2525128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pressure treatment of tailspike aggregates rapidly produces on-pathway folding intermediates.
    Lefebvre BG; Robinson AS
    Biotechnol Bioeng; 2003 Jun; 82(5):595-604. PubMed ID: 12652483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.