These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15834110)

  • 21. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae.
    Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian entrainment and phase resetting differ markedly under dimly illuminated versus completely dark nights.
    Evans JA; Elliott JA; Gorman MR
    Behav Brain Res; 2005 Jul; 162(1):116-26. PubMed ID: 15922072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters.
    Chiesa JJ; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda).
    Chiesa JJ; Aguzzi J; García JA; Sardà F; de la Iglesia HO
    J Biol Rhythms; 2010 Aug; 25(4):277-87. PubMed ID: 20679497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Diurnal rhythm of rectal temperature in mice during various lighting conditions].
    Berezkin MV; Kudinova VF; Batygov AN; Ponomareva LE; Zhukova GN
    Biull Eksp Biol Med; 1988 Sep; 106(9):358-60. PubMed ID: 3167192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of photoperiod on rat motor activity rhythm at the lower limit of entrainment.
    Cambras T; Chiesa J; Araujo J; Díez-Noguera A
    J Biol Rhythms; 2004 Jun; 19(3):216-25. PubMed ID: 15155008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scheduled wheel access during daytime: A method for studying conflicting zeitgebers.
    Dallmann R; Mrosovsky N
    Physiol Behav; 2006 Jul; 88(4-5):459-65. PubMed ID: 16780903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii).
    Valentinuzzi VS; Oda GA; Araujo JF; Ralph MR
    Chronobiol Int; 2009 Jan; 26(1):14-27. PubMed ID: 19142755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Daily and annual variations of free fatty acid, glycerol and leptin plasma concentrations in goats (Capra hircus) under different photoperiods.
    Alila-Johansson A; Eriksson L; Soveri T; Laakso ML
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jun; 138(2):119-31. PubMed ID: 15275646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms.
    López-Olmeda JF; Madrid JA; Sánchez-Vázquez FJ
    Chronobiol Int; 2006; 23(3):537-50. PubMed ID: 16753940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal changes in the circadian activity rhythm of light-dark (LD) and completely dark (DD) regimen in the mouse submandibular gland in the presence of light-dark (LD) and completely dark (DD) regimen.
    Lityńska A
    Physiol Bohemoslov; 1984; 33(5):447-56. PubMed ID: 6542239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Daily activity patterns of a nocturnal and a diurnal rodent in a seminatural environment.
    Refinetti R
    Physiol Behav; 2004 Sep; 82(2-3):285-94. PubMed ID: 15276790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Daily light regulates seasonal responses in the migratory male redheaded bunting (Emberiza bruniceps).
    Rani S; Singh S; Misra M; Malik S; Singh BP; Kumar V
    J Exp Zool A Comp Exp Biol; 2005 Jul; 303(7):541-50. PubMed ID: 15945077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An inbred lineage of djungarian hamsters with a strongly attenuated ability to synchronize.
    Weinert D; Schottner K
    Chronobiol Int; 2007; 24(6):1065-79. PubMed ID: 18075799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seasonal variation of temporal niche in wild owl monkeys (Aotus azarai azarai) of the Argentinean Chaco: a matter of masking?
    Erkert HG; Fernandez-Duque E; Rotundo M; Scheideler A
    Chronobiol Int; 2012 Jul; 29(6):702-14. PubMed ID: 22734571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of feedback lighting on the circadian drinking rhythm in the diurnal new world primate Saimiri sciureus.
    Ferraro JS; Sulzman FM
    Am J Primatol; 1988; 15(2):143-55. PubMed ID: 11539805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian components of semilunar and lunar timing mechanisms.
    Neumann D
    J Biol Rhythms; 1989; 4(2):285-94. PubMed ID: 2519594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entrainment analysis of the circadian locomotor activity rhythm in specimens of the crayfish, Faxonella clypeata, having activity peaks at different times of the solar day.
    Hammond RD; Fingerman M
    Chronobiologia; 1975; 2(2):119-32. PubMed ID: 1201692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.