These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15834624)

  • 1. Threading neural feedforward into a mechanical spring: how biology exploits physics in limb control.
    Kalveram KT; Schinauer T; Beirle S; Richter S; Jansen-Osmann P
    Biol Cybern; 2005 Apr; 92(4):229-40. PubMed ID: 15834624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network control of functional neuromuscular stimulation systems: computer simulation studies.
    Abbas JJ; Chizeck HJ
    IEEE Trans Biomed Eng; 1995 Nov; 42(11):1117-27. PubMed ID: 7498916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel model of motor learning capable of developing an optimal movement control law online from scratch.
    Shimansky YP; Kang T; He J
    Biol Cybern; 2004 Feb; 90(2):133-45. PubMed ID: 14999480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback control of the limbs position during voluntary rhythmic oscillation.
    Esposti R; Cavallari P; Baldissera F
    Biol Cybern; 2007 Aug; 97(2):123-36. PubMed ID: 17534650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse biomimetics: how robots can help to verify concepts concerning sensorimotor control of human arm and leg movements.
    Kalveram KT; Seyfarth A
    J Physiol Paris; 2009; 103(3-5):232-43. PubMed ID: 19665562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An internal model for acquisition and retention of motor learning during arm reaching.
    Lonini L; Dipietro L; Zollo L; Guglielmelli E; Krebs HI
    Neural Comput; 2009 Jul; 21(7):2009-27. PubMed ID: 19323640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor control in a meta-network with attractor dynamics.
    Krouchev NI; Kalaska JF
    Prog Brain Res; 2007; 165():395-410. PubMed ID: 17925260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularity in an environment produces an internal torque pattern for biped balance control.
    Ito S; Kawasaki H
    Biol Cybern; 2005 Apr; 92(4):241-51. PubMed ID: 15789225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.
    Neilson PD; Neilson MD
    J Neural Eng; 2005 Sep; 2(3):S279-312. PubMed ID: 16135890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized neuron: feedforward and recurrent architectures.
    Kulkarni RV; Venayagamoorthy GK
    Neural Netw; 2009 Sep; 22(7):1011-7. PubMed ID: 19660907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided optimal designs for improving neural network generalization.
    Issanchou S; Gauchi JP
    Neural Netw; 2008 Sep; 21(7):945-50. PubMed ID: 18619787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
    Liu M
    Neural Netw; 2009 Sep; 22(7):949-57. PubMed ID: 19443178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedforward impedance control efficiently reduce motor variability.
    Osu R; Morishige K; Miyamoto H; Kawato M
    Neurosci Res; 2009 Sep; 65(1):6-10. PubMed ID: 19523999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel synchronization of discrete-time chaotic systems using neural network observer.
    Naghavi SV; Safavi AA
    Chaos; 2008 Sep; 18(3):033110. PubMed ID: 19045448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems.
    Wang M; Chen B; Shi P
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):721-30. PubMed ID: 18558537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human stick balancing: tuning Lèvy flights to improve balance control.
    Cabrera JL; Milton JG
    Chaos; 2004 Sep; 14(3):691-8. PubMed ID: 15446980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability analysis of neural networks with interval time-varying delays.
    Hou YY; Liao TL; Lien CH; Yan JJ
    Chaos; 2007 Sep; 17(3):033120. PubMed ID: 17903002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.
    Ferrante S; Pedrocchi A; Iannò M; De Momi E; Ferrarin M; Ferrigno G
    Funct Neurol; 2004; 19(4):243-52. PubMed ID: 15776793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal feedback control and the neural basis of volitional motor control.
    Scott SH
    Nat Rev Neurosci; 2004 Jul; 5(7):532-46. PubMed ID: 15208695
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.