BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 15834802)

  • 1. Enhancement of enzyme activity and enantioselectivity by cyclopentyl methyl ether in the transesterification catalyzed by Pseudomonas cepacia lipase co-lyophilized with cyclodextrins.
    Mine Y; Zhang L; Fukunaga K; Sugimura Y
    Biotechnol Lett; 2005 Mar; 27(6):383-8. PubMed ID: 15834802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced enzyme activity and enantioselectivity of lipases in organic solvents by crown ethers and cyclodextrins.
    Mine Y; Fukunaga K; Itoh K; Yoshimoto M; Nakao K; Sugimura Y
    J Biosci Bioeng; 2003; 95(5):441-7. PubMed ID: 16233437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereochemistry of a diastereoisomeric amphiphile and the species of the lipase influence enzyme activity in the transesterification catalyzed by a lipase-co-lyophilizate with the amphiphile in organic media.
    Mine Y; Fukunaga K; Yoshimoto M; Nakao K; Sugimura Y
    Biotechnol Lett; 2003 Nov; 25(21):1863-7. PubMed ID: 14677713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mono- and disaccharides enhance the activity and enantioselectivity of Burkholderia cepacia lipase in organic solvent but do not significantly affect its conformation.
    Secundo F; Carrea G
    Biotechnol Bioeng; 2005 Nov; 92(4):438-46. PubMed ID: 16028297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can an inactivating agent increase enzyme activity in organic solvent? Effects of 18-crown-6 on lipase activity, enantioselectivity, and conformation.
    Secundo F; Barletta GL; Dumitriu E; Carrea G
    Biotechnol Bioeng; 2007 May; 97(1):12-8. PubMed ID: 17096426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utility of cyclodextrins in lipase-catalyzed transesterification in organic solvents: enhanced reaction rate and enantioselectivity.
    Ghanem A
    Org Biomol Chem; 2003 Apr; 1(8):1282-91. PubMed ID: 12929657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent.
    Sakai S; Liu Y; Yamaguchi T; Watanabe R; Kawabe M; Kawakami K
    Biotechnol Lett; 2010 Aug; 32(8):1059-62. PubMed ID: 20424890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-chain ethers as solvents can amplify the enantioselectivity of the Carica papaya lipase-catalyzed transesterification of 2-(substituted phenoxy)propanoic acid esters.
    Miyazawa T; Iguchi W
    Biotechnol Lett; 2013 Oct; 35(10):1639-43. PubMed ID: 23801111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyophilization of lipase with cyclodextrins for efficient catalysis in ionic liquids.
    Wang Y; Mei L
    J Biosci Bioeng; 2007 Apr; 103(4):345-9. PubMed ID: 17502276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-line low-volume transesterification-based assay for immobilized lipases.
    Urban PL; Goodall DM; Bergström ET; Bruce NC
    J Biotechnol; 2006 Dec; 126(4):508-18. PubMed ID: 16793159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structure-controlled investigation of lipase enantioselectivity by a path-planning approach.
    Guieysse D; Cortés J; Puech-Guenot S; Barbe S; Lafaquière V; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2008 May; 9(8):1308-17. PubMed ID: 18418817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid.
    Itoh T; Matsushita Y; Abe Y; Han SH; Wada S; Hayase S; Kawatsura M; Takai S; Morimoto M; Hirose Y
    Chemistry; 2006 Dec; 12(36):9228-37. PubMed ID: 17029309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic resolution of racemic alpha-methyl-beta-propiothiolactone by lipase-catalyzed hydrolysis.
    Hwang BY; Lee HB; Kim YG; Kim BG
    Biotechnol Prog; 2000; 16(6):973-8. PubMed ID: 11101323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation.
    Li N; Hu SB; Feng GY
    Biotechnol Lett; 2012 Jan; 34(1):153-8. PubMed ID: 21972142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity of lipase from Burkholderia cepacia in the synthesis of 3'-arylaliphatic acid esters of floxuridine.
    Li N; Zeng QM; Zong MH
    J Biotechnol; 2009 Jul; 142(3-4):267-70. PubMed ID: 19539679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical resolution of (+/-)-1-aryl-1-alkanols using enantioselective transesterification by lipases.
    Negi S; Umetsu K; Nishijo Y; Kano K; Nakamura K
    Enantiomer; 2000; 5(1):63-70. PubMed ID: 10763870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil.
    Noureddini H; Gao X; Philkana RS
    Bioresour Technol; 2005 May; 96(7):769-77. PubMed ID: 15607189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer.
    Yilmaz E; Sezgin M
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1927-40. PubMed ID: 22383051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.