BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 15834943)

  • 1. Emerging glioneuronal and neuronal tumors: case-based review.
    Lim SD; Kim SI; Park JW; Won JK; Kim SK; Phi JH; Chung CK; Choi SH; Yun H; Park SH
    Brain Tumor Pathol; 2022 Apr; 39(2):65-78. PubMed ID: 35048219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of critical radioresistance genes in esophageal squamous cell carcinoma by whole-exome sequencing.
    Chen Z; Yao N; Zhang S; Song Y; Shao Q; Gu H; Ma J; Chen B; Zhao H; Tian Y
    Ann Transl Med; 2020 Aug; 8(16):998. PubMed ID: 32953798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a gene signature for different stages of breast cancer development that could be used for early diagnosis and specific therapy.
    Kothari C; Ouellette G; Labrie Y; Jacob S; Diorio C; Durocher F
    Oncotarget; 2018 Dec; 9(100):37407-37420. PubMed ID: 30647841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma.
    Chai AW; Cheung AK; Dai W; Ko JM; Ip JC; Chan KW; Kwong DL; Ng WT; Lee AW; Ngan RK; Yau CC; Tung SY; Lee VH; Lam AK; Pillai S; Law S; Lung ML
    Oncotarget; 2016 Nov; 7(48):78859-78871. PubMed ID: 27793011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Analysis of Diffuse High-Grade Astrocytomas in Infancy Defines a Novel Molecular Entity.
    Gielen GH; Gessi M; Buttarelli FR; Baldi C; Hammes J; zur Muehlen A; Doerner E; Denkhaus D; Warmuth-Metz M; Giangaspero F; Lauriola L; von Bueren AO; Kramm CM; Waha A; Pietsch T
    Brain Pathol; 2015 Jul; 25(4):409-17. PubMed ID: 25231549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small nucleolar RNAs in cancer.
    Mannoor K; Liao J; Jiang F
    Biochim Biophys Acta; 2012 Aug; 1826(1):121-8. PubMed ID: 22498252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine-rich intestinal protein 2 (CRIP2) acts as a repressor of NF-kappaB-mediated proangiogenic cytokine transcription to suppress tumorigenesis and angiogenesis.
    Cheung AK; Ko JM; Lung HL; Chan KW; Stanbridge EJ; Zabarovsky E; Tokino T; Kashima L; Suzuki T; Kwong DL; Chua D; Tsao SW; Lung ML
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8390-5. PubMed ID: 21540330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gliomas display a microRNA expression profile reminiscent of neural precursor cells.
    Lavon I; Zrihan D; Granit A; Einstein O; Fainstein N; Cohen MA; Cohen MA; Zelikovitch B; Shoshan Y; Spektor S; Reubinoff BE; Felig Y; Gerlitz O; Ben-Hur T; Smith Y; Siegal T
    Neuro Oncol; 2010 May; 12(5):422-33. PubMed ID: 20406893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome 14 transfer and functional studies identify a candidate tumor suppressor gene, mirror image polydactyly 1, in nasopharyngeal carcinoma.
    Cheung AK; Lung HL; Ko JM; Cheng Y; Stanbridge EJ; Zabarovsky ER; Nicholls JM; Chua D; Tsao SW; Guan XY; Lung ML
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14478-83. PubMed ID: 19667180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer.
    Staub E; Gröne J; Mennerich D; Röpcke S; Klamann I; Hinzmann B; Castanos-Velez E; Mann B; Pilarsky C; Brümmendorf T; Weber B; Buhr HJ; Rosenthal A
    Mol Cancer; 2006 Sep; 5():37. PubMed ID: 16982006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evidence for a colorectal cancer tumor suppressor gene at chromosome 8p22-23 by monochromosome transfer.
    Gustafson CE; Wilson PJ; Lukeis R; Baker E; Woollatt E; Annab L; Hawke L; Barrett JC; Chenevix-Trench G
    Cancer Res; 1996 Nov; 56(22):5238-45. PubMed ID: 8912863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evidence for human tumor suppressor genes.
    Stanbridge EJ
    Princess Takamatsu Symp; 1989; 20():3-13. PubMed ID: 2577336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic behaviour of tumorigenicity in human cancer.
    Weissman BE
    Cancer Surv; 1990; 9(3):475-85. PubMed ID: 1983209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional evidence of decreased tumorigenicity associated with monochromosome transfer of chromosome 14 in esophageal cancer and the mapping of tumor-suppressive regions to 14q32.
    Ko JM; Yau WL; Chan PL; Lung HL; Yang L; Lo PH; Tang JC; Srivastava G; Stanbridge EJ; Lung ML
    Genes Chromosomes Cancer; 2005 Jul; 43(3):284-93. PubMed ID: 15834943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monochromosome transfer and microarray analysis identify a critical tumor-suppressive region mapping to chromosome 13q14 and THSD1 in esophageal carcinoma.
    Ko JM; Chan PL; Yau WL; Chan HK; Chan KC; Yu ZY; Kwong FM; Miller LD; Liu ET; Yang LC; Lo PH; Stanbridge EJ; Tang JC; Srivastava G; Tsao SW; Law S; Lung ML
    Mol Cancer Res; 2008 Apr; 6(4):592-603. PubMed ID: 18403638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monochromosome transfer provides functional evidence for growth-suppressive genes on chromosome 14 in nasopharyngeal carcinoma.
    Cheng Y; Ko JM; Lung HL; Lo PH; Stanbridge EJ; Lung ML
    Genes Chromosomes Cancer; 2003 Aug; 37(4):359-68. PubMed ID: 12800147
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.