These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 15834953)

  • 1. A base-pairing model of duplex formation. I. Watson-Crick pairing geometries.
    Bashford JD; Jarvis PD
    Biopolymers; 2005 Aug; 78(6):287-97. PubMed ID: 15834953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An algebraic model of RNA duplex formation.
    Bashford JD; Jarvis PD
    Biopolymers; 2004 Apr; 73(6):657-67. PubMed ID: 15048769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
    Vecenie CJ; Morrow CV; Zyra A; Serra MJ
    Biochemistry; 2006 Feb; 45(5):1400-7. PubMed ID: 16445282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic characterization of single mismatches found in naturally occurring RNA.
    Davis AR; Znosko BM
    Biochemistry; 2007 Nov; 46(46):13425-36. PubMed ID: 17958380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 5-Me of thyminyl (T) interaction with the neighboring nucleobases dictate the relative stability of isosequential DNA-RNA hybrid duplexes.
    Chatterjee S; Pathmasiri W; Chattopadhyaya J
    Org Biomol Chem; 2005 Nov; 3(21):3911-5. PubMed ID: 16240008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of DNA duplexes with Watson-Crick base pairs: a predicted model.
    Sundaralingam M; Ponnuswamy PK
    Biochemistry; 2004 Dec; 43(51):16467-76. PubMed ID: 15610041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and pairing properties of alpha-tricyclo-DNA.
    Scheidegger SP; Leumann CJ
    Chemistry; 2006 Oct; 12(31):8014-23. PubMed ID: 16915595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative CD and thermodynamic studies between sheared A:G and Watson-Crick A:U(T) base pairs in RNA and DNA.
    Katahira M; Saeki J; Kanagawa M; Nagaoka M; Uesugi S
    Nucleic Acids Symp Ser; 1995; (34):59-60. PubMed ID: 8841551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs.
    Xia T; SantaLucia J; Burkard ME; Kierzek R; Schroeder SJ; Jiao X; Cox C; Turner DH
    Biochemistry; 1998 Oct; 37(42):14719-35. PubMed ID: 9778347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNA.
    Allawi HT; SantaLucia J
    Biochemistry; 1998 Feb; 37(8):2170-9. PubMed ID: 9485363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of pairing constraints identifies a 9 base-pair core within box C/D snoRNA-rRNA duplexes.
    Chen CL; Perasso R; Qu LH; Amar L
    J Mol Biol; 2007 Jun; 369(3):771-83. PubMed ID: 17459411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilities of internal rU-dG and rG-dT pairs in RNA/DNA hybrids.
    Sugimoto N; Yasumatsu I; Fujimoto M
    Nucleic Acids Symp Ser; 1997; (37):199-200. PubMed ID: 9586068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved nearest-neighbor parameters for predicting DNA duplex stability.
    SantaLucia J; Allawi HT; Seneviratne PA
    Biochemistry; 1996 Mar; 35(11):3555-62. PubMed ID: 8639506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches.
    Peyret N; Seneviratne PA; Allawi HT; SantaLucia J
    Biochemistry; 1999 Mar; 38(12):3468-77. PubMed ID: 10090733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a DNA duplex with all-AT base pairs.
    Valls N; Richter M; Subirana JA
    Acta Crystallogr D Biol Crystallogr; 2005 Dec; 61(Pt 12):1587-93. PubMed ID: 16301792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.
    Miyoshi D; Nakamura K; Tateishi-Karimata H; Ohmichi T; Sugimoto N
    J Am Chem Soc; 2009 Mar; 131(10):3522-31. PubMed ID: 19236045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of an RNA duplex r(GGCGBrUGCGCU)2 with terminal and internal tandem G.U base pairs.
    Utsunomiya R; Suto K; Balasundaresan D; Fukamizu A; Kumar PK; Mizuno H
    Acta Crystallogr D Biol Crystallogr; 2006 Mar; 62(Pt 3):331-8. PubMed ID: 16510980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel nucleic acid helices with Hoogsteen base pairing: symmetry and structure.
    Raghunathan G; Miles HT; Sasisekharan V
    Biopolymers; 1994 Dec; 34(12):1573-81. PubMed ID: 7531510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop.
    Tanaka F; Kameda A; Yamamoto M; Ohuchi A
    Biochemistry; 2004 Jun; 43(22):7143-50. PubMed ID: 15170351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of ribonucleotide on a duplex conformation and its thermal stability: study with the chimeric RNA-DNA strands.
    Nakano S; Kanzaki T; Sugimoto N
    J Am Chem Soc; 2004 Feb; 126(4):1088-95. PubMed ID: 14746477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.