These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 15835903)
41. Dynamics of the conformational transitions in the assembling of the Michaelis complex of a bisubstrate enzyme: a (15)N relaxation study of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Lescop E; Lu Z; Liu Q; Xu H; Li G; Xia B; Yan H; Jin C Biochemistry; 2009 Jan; 48(2):302-12. PubMed ID: 19108643 [TBL] [Abstract][Full Text] [Related]
42. BetaQ114N and betaT110V mutations reveal a critically important role of the substrate alpha-carboxylate site in the reaction specificity of tryptophan synthase. Blumenstein L; Domratcheva T; Niks D; Ngo H; Seidel R; Dunn MF; Schlichting I Biochemistry; 2007 Dec; 46(49):14100-16. PubMed ID: 18004874 [TBL] [Abstract][Full Text] [Related]
43. Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. Parsiegla G; Reverbel C; Tardif C; Driguez H; Haser R J Mol Biol; 2008 Jan; 375(2):499-510. PubMed ID: 18035374 [TBL] [Abstract][Full Text] [Related]
45. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Hrmova M; Fincher GB Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065 [TBL] [Abstract][Full Text] [Related]
46. Modes of inactivation of trichodiene synthase by a cyclopropane-containing farnesyldiphosphate analog. Hong YJ; Tantillo DJ Org Biomol Chem; 2009 Oct; 7(19):4101-9. PubMed ID: 19763318 [TBL] [Abstract][Full Text] [Related]
47. Balancing kinetic and thermodynamic control: the mechanism of carbocation cyclization by squalene cyclase. Rajamani R; Gao J J Am Chem Soc; 2003 Oct; 125(42):12768-81. PubMed ID: 14558824 [TBL] [Abstract][Full Text] [Related]
48. Identification of the first bacterial monoterpene cyclase, a 1,8-cineole synthase, that catalyzes the direct conversion of geranyl diphosphate. Nakano C; Kim HK; Ohnishi Y Chembiochem; 2011 Sep; 12(13):1988-91. PubMed ID: 21726035 [No Abstract] [Full Text] [Related]
49. Dihydropteroate synthase from Streptococcus pneumoniae: structure, ligand recognition and mechanism of sulfonamide resistance. Levy C; Minnis D; Derrick JP Biochem J; 2008 Jun; 412(2):379-88. PubMed ID: 18321242 [TBL] [Abstract][Full Text] [Related]
50. Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Ohtaki A; Mizuno M; Yoshida H; Tonozuka T; Sakano Y; Kamitori S Carbohydr Res; 2006 Jun; 341(8):1041-6. PubMed ID: 16564038 [TBL] [Abstract][Full Text] [Related]
51. The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase requires subunit interaction. Noike M; Katagiri T; Nakayama T; Koyama T; Nishino T; Hemmi H FEBS J; 2008 Aug; 275(15):3921-33. PubMed ID: 18616462 [TBL] [Abstract][Full Text] [Related]
52. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition. Faucher F; Cantin L; Luu-The V; Labrie F; Breton R Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558 [TBL] [Abstract][Full Text] [Related]
53. Crystal structure of F95Q epi-isozizaene synthase, an engineered sesquiterpene cyclase that generates biofuel precursors β- and γ-curcumene. Blank PN; Barrow GH; Christianson DW J Struct Biol; 2019 Aug; 207(2):218-224. PubMed ID: 31152775 [TBL] [Abstract][Full Text] [Related]
54. Mechanism of substrate recognition and PLP-induced conformational changes in LL-diaminopimelate aminotransferase from Arabidopsis thaliana. Watanabe N; Clay MD; van Belkum MJ; Cherney MM; Vederas JC; James MN J Mol Biol; 2008 Dec; 384(5):1314-29. PubMed ID: 18952095 [TBL] [Abstract][Full Text] [Related]
55. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases. Isorna P; Polaina J; Latorre-García L; Cañada FJ; González B; Sanz-Aparicio J J Mol Biol; 2007 Aug; 371(5):1204-18. PubMed ID: 17585934 [TBL] [Abstract][Full Text] [Related]
56. Studies of the cryptic allylic pyrophosphate isomerase activity of trichodiene synthase using the anomalous substrate 6,7-dihydrofarnesyl pyrophosphate. Cane DE; Pawlak JL; Horak RM Biochemistry; 1990 Jun; 29(23):5476-90. PubMed ID: 2386780 [TBL] [Abstract][Full Text] [Related]
57. Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding. Faucher F; Cantin L; Pereira de Jésus-Tran K; Lemieux M; Luu-The V; Labrie F; Breton R J Mol Biol; 2007 Jun; 369(2):525-40. PubMed ID: 17442338 [TBL] [Abstract][Full Text] [Related]
58. Molecular basis for substrate selectivity and specificity by an LPS biosynthetic enzyme. Zou Y; Li C; Brunzelle JS; Nair SK Biochemistry; 2007 Apr; 46(14):4294-304. PubMed ID: 17371001 [TBL] [Abstract][Full Text] [Related]
59. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686 [TBL] [Abstract][Full Text] [Related]