BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 15835993)

  • 21. A promising approach to the synthesis of 3D nanoporous graphitic carbon as a unique electrocatalyst support for methanol oxidation.
    Tiwari JN; Tiwari RN; Chang YM; Lin KL
    ChemSusChem; 2010 Apr; 3(4):460-6. PubMed ID: 20101666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports.
    Sevilla M; Salinas Martínez-de Lecea C; Valdés-Solís T; Morallón E; Fuertes AB
    Phys Chem Chem Phys; 2008 Mar; 10(10):1433-42. PubMed ID: 18309400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.
    Deng L; Zhou M; Liu C; Liu L; Liu C; Dong S
    Talanta; 2010 Apr; 81(1-2):444-8. PubMed ID: 20188944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell.
    Aravind SS; Ramaprabhu S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3805-10. PubMed ID: 22850438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication.
    Yang DQ; Rochette JF; Sacher E
    J Phys Chem B; 2005 Apr; 109(16):7788-94. PubMed ID: 16851905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes.
    Michel M; Ettingshausen F; Scheiba F; Wolz A; Roth C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3796-801. PubMed ID: 18563240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deposition of platinum nanoparticles on carbon nanotubes by supercritical fluid method.
    Yen CH; Cui X; Pan HB; Wang S; Lin Y; Wai CM
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1852-7. PubMed ID: 16433421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwave-assisted synthesis of pt nanocrystals and deposition on carbon nanotubes in ionic liquids.
    Liu Z; Sun Z; Han B; Zhang J; Huang J; Du J; Miao S
    J Nanosci Nanotechnol; 2006 Jan; 6(1):175-9. PubMed ID: 16573091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and 195Pt EC-NMR study.
    Yano H; Inukai J; Uchida H; Watanabe M; Babu PK; Kobayashi T; Chung JH; Oldfield E; Wieckowski A
    Phys Chem Chem Phys; 2006 Nov; 8(42):4932-9. PubMed ID: 17066184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of recombinant rotavirus VP6 nanotubes as a multifunctional template for the synthesis of nanobiomaterials functionalized with metals.
    Plascencia-Villa G; Saniger JM; Ascencio JA; Palomares LA; Ramírez OT
    Biotechnol Bioeng; 2009 Dec; 104(5):871-81. PubMed ID: 19655393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization.
    Li W; Gao C
    Langmuir; 2007 Apr; 23(8):4575-82. PubMed ID: 17358086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes.
    Schneider A; Colmenares L; Seidel YE; Jusys Z; Wickman B; Kasemo B; Behm RJ
    Phys Chem Chem Phys; 2008 Apr; 10(14):1931-43. PubMed ID: 18368186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.
    Zhang J; Vukmirovic MB; Sasaki K; Nilekar AU; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2005 Sep; 127(36):12480-1. PubMed ID: 16144382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen.
    Karnicka K; Miecznikowski K; Kowalewska B; Skunik M; Opallo M; Rogalski J; Schuhmann W; Kulesza PJ
    Anal Chem; 2008 Oct; 80(19):7643-8. PubMed ID: 18729478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functionalized multiwall carbon nanotube/gold nanoparticle composites.
    Kim B; Sigmund WM
    Langmuir; 2004 Sep; 20(19):8239-42. PubMed ID: 15350098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusion of metal in a confined nanospace of carbon nanotubes induced by air oxidation.
    Zhou J; Song H; Chen X; Huo J
    J Am Chem Soc; 2010 Aug; 132(33):11402-5. PubMed ID: 20684548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation.
    Gu YJ; Wong WT
    Langmuir; 2006 Dec; 22(26):11447-52. PubMed ID: 17154638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation.
    Liu F; Lee JY; Zhou WJ
    Small; 2006 Jan; 2(1):121-8. PubMed ID: 17193567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Encapsulation of pt-labelled DNA molecules inside carbon nanotubes.
    Cui D; Ozkan CS; Ravindran S; Kong Y; Gao H
    Mech Chem Biosyst; 2004 Jun; 1(2):113-21. PubMed ID: 16783937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An enhanced biosensor for glutamate based on self-assembled carbon nanotubes and dendrimer-encapsulated platinum nanobiocomposites-doped polypyrrole film.
    Tang L; Zhu Y; Yang X; Li C
    Anal Chim Acta; 2007 Jul; 597(1):145-50. PubMed ID: 17658324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.