These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15836001)

  • 1. Vibration-actuated drop motion on surfaces for batch microfluidic processes.
    Daniel S; Chaudhury MK; de Gennes PG
    Langmuir; 2005 Apr; 21(9):4240-8. PubMed ID: 15836001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion of drops on a surface induced by thermal gradient and vibration.
    Mettu S; Chaudhury MK
    Langmuir; 2008 Oct; 24(19):10833-7. PubMed ID: 18720961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis.
    Mettu S; Chaudhury MK
    Langmuir; 2011 Aug; 27(16):10327-33. PubMed ID: 21728326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced force on a microfluidic drop: origin and magnitude.
    Verneuil E; Cordero M; Gallaire F; Baroud CN
    Langmuir; 2009 May; 25(9):5127-34. PubMed ID: 19358521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral vibration of a water drop and its motion on a vibrating surface.
    Dong L; Chaudhury A; Chaudhury MK
    Eur Phys J E Soft Matter; 2006 Nov; 21(3):231-42. PubMed ID: 17205212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully integrated miniature device for automated gene expression DNA microarray processing.
    Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A
    Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratcheting motion of liquid drops on gradient surfaces.
    Daniel S; Sircar S; Gliem J; Chaudhury MK
    Langmuir; 2004 May; 20(10):4085-92. PubMed ID: 15969401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and deformation of droplets in a microdevice using dielectrophoresis.
    Singh P; Aubry N
    Electrophoresis; 2007 Feb; 28(4):644-57. PubMed ID: 17304498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic forces acting on a microscopic emulsion drop growing at a capillary tip in relation to the process of membrane emulsification.
    Danov KD; Danova DK; Kralchevsky PA
    J Colloid Interface Sci; 2007 Dec; 316(2):844-57. PubMed ID: 17900600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Soper SA
    Biosens Bioelectron; 2006 Apr; 21(10):1915-23. PubMed ID: 16488597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate.
    Stan CA; Tang SK; Whitesides GM
    Anal Chem; 2009 Mar; 81(6):2399-402. PubMed ID: 19209912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drop motion induced by repeated stretching and relaxation on a gradient surface with hysteresis.
    Longley JE; Dooley E; Givler DM; Napier WJ; Chaudhury MK; Daniel S
    Langmuir; 2012 Oct; 28(39):13912-8. PubMed ID: 22950893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentrating particles on drop surfaces using external electric fields.
    Nudurupati S; Janjua M; Aubry N; Singh P
    Electrophoresis; 2008 Mar; 29(5):1164-72. PubMed ID: 18306181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.
    Hashimoto M; Hupert ML; Murphy MC; Soper SA; Cheng YW; Barany F
    Anal Chem; 2005 May; 77(10):3243-55. PubMed ID: 15889915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations.
    Hagiwara M; Kawahara T; Yamanishi Y; Masuda T; Feng L; Arai F
    Lab Chip; 2011 Jun; 11(12):2049-54. PubMed ID: 21562668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermocapillary motion of a liquid drop on a horizontal solid surface.
    Pratap V; Moumen N; Subramanian RS
    Langmuir; 2008 May; 24(9):5185-93. PubMed ID: 18399689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.
    Das AK; Das PK
    Langmuir; 2009 Oct; 25(19):11459-66. PubMed ID: 19719159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated polymerase chain reaction chips utilizing digital microfluidics.
    Chang YH; Lee GB; Huang FC; Chen YY; Lin JL
    Biomed Microdevices; 2006 Sep; 8(3):215-25. PubMed ID: 16718406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops.
    Gokhale SJ; Plawsky JL; Wayner PC
    Langmuir; 2005 Aug; 21(18):8188-97. PubMed ID: 16114921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic drop morphologies on corrugated surfaces.
    Kusumaatmaja H; Vrancken RJ; Bastiaansen CW; Yeomans JM
    Langmuir; 2008 Jul; 24(14):7299-308. PubMed ID: 18547090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.