These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 15836113)
1. Stationary phase evaluations of quantum rate constants. Yang S; Cao J J Chem Phys; 2005 Mar; 122(9):094108. PubMed ID: 15836113 [TBL] [Abstract][Full Text] [Related]
2. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation. Yamamoto T; Miller WH J Chem Phys; 2004 Feb; 120(7):3086-99. PubMed ID: 15268461 [TBL] [Abstract][Full Text] [Related]
3. Path-integral virial estimator for reaction-rate calculation based on the quantum instanton approximation. Yang S; Yamamoto T; Miller WH J Chem Phys; 2006 Feb; 124(8):084102. PubMed ID: 16512703 [TBL] [Abstract][Full Text] [Related]
5. Semiclassical instanton approach to calculation of reaction rate constants in multidimensional chemical systems. Kryvohuz M J Chem Phys; 2011 Mar; 134(11):114103. PubMed ID: 21428603 [TBL] [Abstract][Full Text] [Related]
6. Quantum-instanton evaluation of the kinetic isotope effects. Vanícek J; Miller WH; Castillo JF; Aoiz FJ J Chem Phys; 2005 Aug; 123(5):054108. PubMed ID: 16108632 [TBL] [Abstract][Full Text] [Related]
7. Path integral formulation for quantum nonadiabatic dynamics and the mixed quantum classical limit. Krishna V J Chem Phys; 2007 Apr; 126(13):134107. PubMed ID: 17430016 [TBL] [Abstract][Full Text] [Related]
8. Low temperature electron transfer in strongly condensed phase. Ankerhold J; Lehle H J Chem Phys; 2004 Jan; 120(3):1436-49. PubMed ID: 15268269 [TBL] [Abstract][Full Text] [Related]
9. Rate constants calculation with a simple mixed quantum/classical implementation of the flux-flux correlation function method. Palma J J Chem Phys; 2009 Mar; 130(12):124119. PubMed ID: 19334820 [TBL] [Abstract][Full Text] [Related]
10. Semiclassical calculation of nonadiabatic thermal rate constants: application to condensed phase reactions. Zhao Y; Li X; Zheng Z; Liang W J Chem Phys; 2006 Mar; 124(11):114508. PubMed ID: 16555902 [TBL] [Abstract][Full Text] [Related]
11. Closed-form expressions of quantum electron transfer rate based on the stationary-phase approximation. Jang S; Newton MD J Phys Chem B; 2006 Sep; 110(38):18996-9003. PubMed ID: 16986895 [TBL] [Abstract][Full Text] [Related]
12. Nonadiabatic dynamics of condensed phase rate processes. Hanna G; Kapral R Acc Chem Res; 2006 Jan; 39(1):21-7. PubMed ID: 16411736 [TBL] [Abstract][Full Text] [Related]
13. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence. Bedard-Hearn MJ; Larsen RE; Schwartz BJ J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913 [TBL] [Abstract][Full Text] [Related]
14. Quantum instanton evaluation of the thermal rate constants and kinetic isotope effects for SiH4+H-->SiH3+H2 reaction in full Cartesian space. Wang W; Feng S; Zhao Y J Chem Phys; 2007 Mar; 126(11):114307. PubMed ID: 17381206 [TBL] [Abstract][Full Text] [Related]
15. Direct determination of reaction paths and stationary points on potential of mean force surfaces. Li G; Cui Q J Mol Graph Model; 2005 Oct; 24(2):82-93. PubMed ID: 16005650 [TBL] [Abstract][Full Text] [Related]
16. Comparison of quantum dynamics and quantum transition state theory estimates of the H + CH4 reaction rate. Andersson S; Nyman G; Arnaldsson A; Manthe U; Jónsson H J Phys Chem A; 2009 Apr; 113(16):4468-78. PubMed ID: 19275158 [TBL] [Abstract][Full Text] [Related]
17. The rainbow instanton method: a new approach to tunneling splitting in polyatomics. Smedarchina Z; Siebrand W; Fernández-Ramos A J Chem Phys; 2012 Dec; 137(22):224105. PubMed ID: 23248985 [TBL] [Abstract][Full Text] [Related]
18. Extended spin-boson model for nonadiabatic hydrogen tunneling in the condensed phase. Ohta Y; Soudackov AV; Hammes-Schiffer S J Chem Phys; 2006 Oct; 125(14):144522. PubMed ID: 17042624 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear quantum time correlation functions from centroid molecular dynamics and the maximum entropy method. Paesani F; Voth GA J Chem Phys; 2008 Nov; 129(19):194113. PubMed ID: 19026051 [TBL] [Abstract][Full Text] [Related]
20. The quantum solvation, adiabatic versus nonadiabatic, and Markovian versus non-Markovian nature of electron-transfer rate processes. Xu RX; Chen Y; Cui P; Ke HW; Yan Y J Phys Chem A; 2007 Sep; 111(38):9618-26. PubMed ID: 17727277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]