These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15836167)

  • 1. Control of particle assisted wetting by an external magnetic field.
    Tierno P; Goedel WA
    J Chem Phys; 2005 Mar; 122(9):094712. PubMed ID: 15836167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using paramagnetic particles as repulsive templates for the preparation of membranes of controlled porosity.
    Tierno P; Thonke K; Goedel WA
    Langmuir; 2005 Oct; 21(21):9476-81. PubMed ID: 16207024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of perpendicular external magnetic field on microstructures of monolayer composed of ferromagnetic particles: analysis by means of quasi-two-dimensional Monte Carlo simulation.
    Aoshima M; Satoh A; Chantrell RW
    J Colloid Interface Sci; 2008 Jul; 323(1):158-68. PubMed ID: 18452934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric-field-induced capillary attraction between like-charged particles at liquid interfaces.
    Nikolaides MG; Bausch AR; Hsu MF; Dinsmore AD; Brenner MP; Gay C; Weitz DA
    Nature; 2002 Nov; 420(6913):299-301. PubMed ID: 12447435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong magnetic field effects on solid-liquid and particle-particle interactions during the processing of a conducting liquid containing non-conducting particles.
    Sun ZH; Zhang X; Guo M; Pandelaers L; Vleugels J; Van der Biest O; Van Reusel K; Blanpain B
    J Colloid Interface Sci; 2012 Jun; 375(1):203-12. PubMed ID: 22443967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of particle-assisted wetting.
    Ding A; Goedel WA
    J Am Chem Soc; 2006 Apr; 128(15):4930-1. PubMed ID: 16608308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forces acting on dielectric colloidal spheres at a water/nonpolar fluid interface in an external electric field. 2. Charged particles.
    Danov KD; Kralchevsky PA
    J Colloid Interface Sci; 2013 Sep; 405():269-77. PubMed ID: 23759324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and stability of silica particle monolayers at horizontal and vertical octane-water interfaces.
    Horozov TS; Aveyard R; Binks BP; Clint JH
    Langmuir; 2005 Aug; 21(16):7405-12. PubMed ID: 16042472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attraction between particles at a liquid interface due to the interplay of gravity- and electric-field-induced interfacial deformations.
    Boneva MP; Danov KD; Christov NC; Kralchevsky PA
    Langmuir; 2009 Aug; 25(16):9129-39. PubMed ID: 19719220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DC dielectrophoretic particle-particle interactions and their relative motions.
    Ai Y; Qian S
    J Colloid Interface Sci; 2010 Jun; 346(2):448-54. PubMed ID: 20334869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Squeezing wetting and nonwetting liquids.
    Samoilov VN; Persson BN
    J Chem Phys; 2004 Jan; 120(4):1997-2004. PubMed ID: 15268334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of dilute hematite/silicone oil suspensions under low electric fields.
    Espin MJ; Delgado AV; DurĂ¡n JD
    J Colloid Interface Sci; 2005 Jul; 287(1):351-9. PubMed ID: 15914184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of particle hydrophobicity on particle-assisted wetting.
    Ding A; Binks BP; Goedel WA
    Langmuir; 2005 Feb; 21(4):1371-6. PubMed ID: 15697283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density-functional study of model bidisperse ferrocolloids in an external magnetic field.
    Range GM; Klapp SH
    J Chem Phys; 2005 Jun; 122(22):224902. PubMed ID: 15974711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization and interactions of colloidal particles in ac electric fields.
    Mittal M; Lele PP; Kaler EW; Furst EM
    J Chem Phys; 2008 Aug; 129(6):064513. PubMed ID: 18715091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic reversible aggregation of latex nanoparticles suspended in a lyotropic nematic liquid crystal: effect of gradients of biaxial order.
    Alves VM; Nakamatsu S; Oliveira EA; Zappone B; Richetti P
    Langmuir; 2009 Oct; 25(19):11849-56. PubMed ID: 19702247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric field-induced self-assembly of micro- and nanoparticles of various shapes at two-fluid interfaces.
    Janjua M; Nudurupati S; Singh P; Aubry N
    Electrophoresis; 2011 Feb; 32(5):518-26. PubMed ID: 21341286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of optically trapped colloidal particles at an oil-water interface.
    Sun J; Stirner T
    J Chem Phys; 2004 Sep; 121(9):4292-6. PubMed ID: 15332977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disaggregation of microparticle clusters by induced magnetic dipole-dipole repulsion near a surface.
    Gao Y; van Reenen A; Hulsen MA; de Jong AM; Prins MW; den Toonder JM
    Lab Chip; 2013 Apr; 13(7):1394-401. PubMed ID: 23400503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.