These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15836183)

  • 1. Statistical thermodynamics for chain molecules with simple RNA tertiary contacts.
    Kopeikin Z; Chen SJ
    J Chem Phys; 2005 Mar; 122(9):094909. PubMed ID: 15836183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of RNA multiloop and pseudoknot conformations from a lattice-based, coarse-grain tertiary structure model.
    Jost D; Everaers R
    J Chem Phys; 2010 Mar; 132(9):095101. PubMed ID: 20210413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA folding: conformational statistics, folding kinetics, and ion electrostatics.
    Chen SJ
    Annu Rev Biophys; 2008; 37():197-214. PubMed ID: 18573079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting loop-helix tertiary structural contacts in RNA pseudoknots.
    Cao S; Giedroc DP; Chen SJ
    RNA; 2010 Mar; 16(3):538-52. PubMed ID: 20100813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing the conformational entropy for RNA folds.
    Liu L; Chen SJ
    J Chem Phys; 2010 Jun; 132(23):235104. PubMed ID: 20572741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change.
    Reyes CM; Kollman PA
    J Mol Biol; 2000 Apr; 297(5):1145-58. PubMed ID: 10764579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting RNA folding thermodynamics with a reduced chain representation model.
    Cao S; Chen SJ
    RNA; 2005 Dec; 11(12):1884-97. PubMed ID: 16251382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A knowledge-based potential function predicts the specificity and relative binding energy of RNA-binding proteins.
    Zheng S; Robertson TA; Varani G
    FEBS J; 2007 Dec; 274(24):6378-91. PubMed ID: 18005254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimum-free-energy distribution of RNA secondary structures: Entropic and thermodynamic properties of rare events.
    Wolfsheimer S; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021902. PubMed ID: 20866832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in dynamics of SRE-RNA on binding to the VTS1p-SAM domain studied by 13C NMR relaxation.
    Oberstrass FC; Allain FH; Ravindranathan S
    J Am Chem Soc; 2008 Sep; 130(36):12007-20. PubMed ID: 18698768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
    Barbosa MA; Garcia LG; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical and Bayesian approaches to RNA secondary structure prediction.
    Ding Y
    RNA; 2006 Mar; 12(3):323-31. PubMed ID: 16495231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scoring predictive models using a reduced representation of proteins: model and energy definition.
    Fogolari F; Pieri L; Dovier A; Bortolussi L; Giugliarelli G; Corazza A; Esposito G; Viglino P
    BMC Struct Biol; 2007 Mar; 7():15. PubMed ID: 17378941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of folding and association of lattice-model proteins.
    Cellmer T; Bratko D; Prausnitz JM; Blanch H
    J Chem Phys; 2005 May; 122(17):174908. PubMed ID: 15910070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics.
    DePaul AJ; Thompson EJ; Patel SS; Haldeman K; Sorin EJ
    Nucleic Acids Res; 2010 Aug; 38(14):4856-67. PubMed ID: 20223768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational methods for prediction of protein-RNA interactions.
    Puton T; Kozlowski L; Tuszynska I; Rother K; Bujnicki JM
    J Struct Biol; 2012 Sep; 179(3):261-8. PubMed ID: 22019768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical description of finite size effects for RNA secondary structures.
    Liu T; Bundschuh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061912. PubMed ID: 15244622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and energy determinants in protein-RNA docking.
    Pérez-Cano L; Romero-Durana M; Fernández-Recio J
    Methods; 2017 Apr; 118-119():163-170. PubMed ID: 27816523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of U1A protein changes RNA dynamics as observed by 13C NMR relaxation studies.
    Shajani Z; Drobny G; Varani G
    Biochemistry; 2007 May; 46(20):5875-83. PubMed ID: 17469848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.