These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 15836200)

  • 1. Two-photon absorption in the relativistic four-component Hartree-Fock approximation.
    Henriksson J; Norman P; Jensen HJ
    J Chem Phys; 2005 Mar; 122(11):114106. PubMed ID: 15836200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadratic response functions in the time-dependent four-component Hartree-Fock approximation.
    Norman P; Jensen HJ
    J Chem Phys; 2004 Oct; 121(13):6145-54. PubMed ID: 15446908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the evaluation of quadratic response functions at the four-component Hartree-Fock level: nonlinear polarization and two-photon absorption in bromo- and iodobenzene.
    Henriksson J; Ekström U; Norman P
    J Chem Phys; 2006 Jun; 124(21):214311. PubMed ID: 16774411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-component Hartree-Fock calculations of magnetic-field induced circular birefringence--Faraday effect--in noble gases and dihalogens.
    Ekström U; Norman P; Rizzo A
    J Chem Phys; 2005 Feb; 122(7):074321. PubMed ID: 15743246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-order excited state properties in the four-component Hartree-Fock approximation: the excited state electric dipole moments in CsAg and CsAu.
    Tellgren E; Henriksson J; Norman P
    J Chem Phys; 2007 Feb; 126(6):064313. PubMed ID: 17313221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric field effects on the shielding constants of noble gases: a four-component relativistic Hartree-Fock study.
    Pecul M; Saue T; Ruud K; Rizzo A
    J Chem Phys; 2004 Aug; 121(7):3051-7. PubMed ID: 15291614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects.
    Lantto P; Vaara J
    J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations of frequency-dependent molecular magnetizabilities with quasi-relativistic time-dependent generalized unrestricted Hartree-Fock method.
    Yoshizawa T; Hada M
    J Comput Chem; 2007 Mar; 28(4):740-7. PubMed ID: 17226833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic effects on nuclear magnetic shielding constants in HX and CH3X (X=Br,I) based on the linear response within the elimination of small component approach.
    Melo JI; Ruiz de Azua MC; Giribet CG; Aucar GA; Provasi PF
    J Chem Phys; 2004 Oct; 121(14):6798-808. PubMed ID: 15473737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic two-component formulation of time-dependent current-density functional theory: application to the linear response of solids.
    Romaniello P; de Boeij PL
    J Chem Phys; 2007 Nov; 127(17):174111. PubMed ID: 17994811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct perturbation theory in terms of energy derivatives: fourth-order relativistic corrections at the Hartree-Fock level.
    Stopkowicz S; Gauss J
    J Chem Phys; 2011 Feb; 134(6):064114. PubMed ID: 21322668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of identity Dirac-Kohn-Sham method using the large component only: Calculations of g-tensor and hyperfine tensor.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin I; Kaupp M
    J Chem Phys; 2006 Feb; 124(8):084108. PubMed ID: 16512709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic sequence of relativistic approximations.
    Dyall KG
    J Comput Chem; 2002 Jun; 23(8):786-93. PubMed ID: 12012355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory.
    Filatov M; Cremer D
    J Chem Phys; 2005 Feb; 122(6):064104. PubMed ID: 15740364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory.
    Paterson MJ; Christiansen O; Pawłowski F; Jorgensen P; Hättig C; Helgaker T; Sałek P
    J Chem Phys; 2006 Feb; 124(5):054322. PubMed ID: 16468884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: a four-component relativistic study.
    Bast R; Schwerdtfeger P; Saue T
    J Chem Phys; 2006 Aug; 125(6):64504. PubMed ID: 16942295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic electronic structure theory.
    Nakajima T; Yanai T; Hirao K
    J Comput Chem; 2002 Jun; 23(8):847-60. PubMed ID: 12012361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules.
    Thyssen J; Fleig T; Jensen HJ
    J Chem Phys; 2008 Jul; 129(3):034109. PubMed ID: 18647018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.