These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 15836229)

  • 1. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between the melting temperature and the temperature of maximum density for the most common models of water.
    Vega C; Abascal JL
    J Chem Phys; 2005 Oct; 123(14):144504. PubMed ID: 16238404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting temperature of ice Ih calculated from coexisting solid-liquid phases.
    Wang J; Yoo S; Bai J; Morris JR; Zeng XC
    J Chem Phys; 2005 Jul; 123(3):36101. PubMed ID: 16080767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.
    Slovák J; Tanaka H
    J Chem Phys; 2005 May; 122(20):204512. PubMed ID: 15945757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of ices at 0 K: a test of water models.
    Aragones JL; Noya EG; Abascal JL; Vega C
    J Chem Phys; 2007 Oct; 127(15):154518. PubMed ID: 17949184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of two new solid phases of water: Ice XIII and ice XIV.
    Martin-Conde M; MacDowell LG; Vega C
    J Chem Phys; 2006 Sep; 125(11):116101. PubMed ID: 16999507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric constant of ices and water: a lesson about water interactions.
    Aragones JL; MacDowell LG; Vega C
    J Phys Chem A; 2011 Jun; 115(23):5745-58. PubMed ID: 20866096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation.
    Conde MM; Vega C; Patrykiejew A
    J Chem Phys; 2008 Jul; 129(1):014702. PubMed ID: 18624491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of polarizability in the modeling of solubility: quantifying the effect of solute polarizability on the solubility of small nonpolar solutes in popular models of water.
    Dyer PJ; Docherty H; Cummings PT
    J Chem Phys; 2008 Jul; 129(2):024508. PubMed ID: 18624539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models.
    Paschek D
    J Chem Phys; 2004 Apr; 120(14):6674-90. PubMed ID: 15267560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL; Conde MM; Noya EG; Vega C
    Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phase diagram of water at negative pressures: virtual ices.
    Conde MM; Vega C; Tribello GA; Slater B
    J Chem Phys; 2009 Jul; 131(3):034510. PubMed ID: 19624212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM; Vega C
    J Chem Phys; 2010 Aug; 133(6):064507. PubMed ID: 20707575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potential model for the study of ices and amorphous water: TIP4P/Ice.
    Abascal JL; Sanz E; García Fernández R; Vega C
    J Chem Phys; 2005 Jun; 122(23):234511. PubMed ID: 16008466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.