These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows. Crofts JJ; Davidchack RL Chaos; 2009 Sep; 19(3):033138. PubMed ID: 19792018 [TBL] [Abstract][Full Text] [Related]
3. A note on chaotic unimodal maps and applications. Zhou CT; He XT; Yu MY; Chew LY; Wang XG Chaos; 2006 Sep; 16(3):033113. PubMed ID: 17014218 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of a single ion in a perturbed Penning trap: octupolar perturbation. Lara M; Salas JP Chaos; 2004 Sep; 14(3):763-73. PubMed ID: 15446986 [TBL] [Abstract][Full Text] [Related]
5. On the absence of stable periodic orbits in domains of separatrix crossings in nonsymmetric slow-fast Hamiltonian systems. Neishtadt A; Vasiliev A Chaos; 2007 Dec; 17(4):043104. PubMed ID: 18163768 [TBL] [Abstract][Full Text] [Related]
6. Topological degree in analysis of chaotic behavior in singularly perturbed systems. Pokrovskii A; Zhezherun A Chaos; 2008 Jun; 18(2):023130. PubMed ID: 18601496 [TBL] [Abstract][Full Text] [Related]
8. Generalized synchronization via nonlinear control. Juan M; Xingyuan W Chaos; 2008 Jun; 18(2):023108. PubMed ID: 18601475 [TBL] [Abstract][Full Text] [Related]
9. Regions of nonexistence of invariant tori for spin-orbit models. Celletti A; MacKay R Chaos; 2007 Dec; 17(4):043119. PubMed ID: 18163783 [TBL] [Abstract][Full Text] [Related]
10. Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Brunton SL; Rowley CW Chaos; 2010 Mar; 20(1):017503. PubMed ID: 20370293 [TBL] [Abstract][Full Text] [Related]
12. Breathers and thermal relaxation as a temporal process: a possible way to detect breathers in experimental situations. Castrejón Pita AA; Castrejón Pita JR; Sarmiento G A Chaos; 2005 Jun; 15(2):23501. PubMed ID: 16035889 [TBL] [Abstract][Full Text] [Related]
13. Normal and anomalous heat transport in one-dimensional classical lattices. Prosen T; Campbell DK Chaos; 2005 Mar; 15(1):15117. PubMed ID: 15836294 [TBL] [Abstract][Full Text] [Related]
14. Complex dynamics in simple Hopfield neural networks. Yang XS; Huang Y Chaos; 2006 Sep; 16(3):033114. PubMed ID: 17014219 [TBL] [Abstract][Full Text] [Related]
15. Symbolic synchronization and the detection of global properties of coupled dynamics from local information. Jalan S; Jost J; Atay FM Chaos; 2006 Sep; 16(3):033124. PubMed ID: 17014229 [TBL] [Abstract][Full Text] [Related]
16. Frequency dependence of phase-synchronization time in nonlinear dynamical systems. Park K; Lai YC; Krishnamoorthy S Chaos; 2007 Dec; 17(4):043111. PubMed ID: 18163775 [TBL] [Abstract][Full Text] [Related]
17. Length scale competition in nonlinear Klein-Gordon models: a collective coordinate approach. Cuenda S; Sánchez A Chaos; 2005 Jun; 15(2):23502. PubMed ID: 16035890 [TBL] [Abstract][Full Text] [Related]
19. A general multiscroll Lorenz system family and its realization via digital signal processors. Yu S; Lü J; Tang WK; Chen G Chaos; 2006 Sep; 16(3):033126. PubMed ID: 17014231 [TBL] [Abstract][Full Text] [Related]
20. Generalized projective synchronization of chaotic systems with unknown dead-zone input: observer-based approach. Hung YC; Hwang CC; Liao TL; Yan JJ Chaos; 2006 Sep; 16(3):033125. PubMed ID: 17014230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]