These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15836270)

  • 1. Detecting synchronizations in an asymmetric vocal fold model from time series data.
    Tokuda I; Herzel H
    Chaos; 2005 Mar; 15(1):13702. PubMed ID: 15836270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaos in voice, from modeling to measurement.
    Jiang JJ; Zhang Y; McGilligan C
    J Voice; 2006 Mar; 20(1):2-17. PubMed ID: 15964740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization.
    Zhang Y; Tao C; Jiang JJ
    Chaos; 2006 Jun; 16(2):023118. PubMed ID: 16822021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting anomalous phase synchronization from time series.
    Tokuda IT; Kumar Dana S; Kurths J
    Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal classification of vocal fold dynamics by a multimass model comprising time-dependent parameters.
    Wurzbacher T; Döllinger M; Schwarz R; Hoppe U; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 Apr; 123(4):2324-34. PubMed ID: 18397036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approach to chaotic synchronization.
    Hramov AE; Koronovskii AA
    Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias.
    Braunschweig T; Flaschka J; Schelhorn-Neise P; Döllinger M
    Med Eng Phys; 2008 Jan; 30(1):59-66. PubMed ID: 17317268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotic synchronization of coupled electron-wave systems with backward waves.
    Hramov AE; Koronovskii AA; Popov PV; Rempen IS
    Chaos; 2005 Mar; 15(1):13705. PubMed ID: 15836273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying vocal fold vibrations in Parkinson's disease with a nonlinear model.
    Zhang Y; Jiang J; Rahn DA
    Chaos; 2005 Sep; 15(3):33903. PubMed ID: 16252994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a two-mass model of speech.
    Erath BD; Zañartu M; Peterson SD; Plesniak MW
    Chaos; 2011 Sep; 21(3):033113. PubMed ID: 21974648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.
    Erath BD; Peterson SD; Zañartu M; Wodicka GR; Plesniak MW
    J Acoust Soc Am; 2011 Jul; 130(1):389-403. PubMed ID: 21786907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the relaxation oscillations principle for simple phonation modeling.
    Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M
    J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Modeling vocal-fold vibration via integrating two-mass model with finite-element method].
    Jiang J; Yu Q; Qiu Q; Xu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):297-302. PubMed ID: 15884539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized projective synchronization of chaotic systems with unknown dead-zone input: observer-based approach.
    Hung YC; Hwang CC; Liao TL; Yan JJ
    Chaos; 2006 Sep; 16(3):033125. PubMed ID: 17014230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear modelling of double and triple period pitch breaks in vocal fold vibration.
    Menzer F; Buchli J; Howard DM; Ijspeert AJ
    Logoped Phoniatr Vocol; 2006; 31(1):36-42. PubMed ID: 16517521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical modeling of register transitions and the role of vocal tract resonators.
    Tokuda IT; Zemke M; Kob M; Herzel H
    J Acoust Soc Am; 2010 Mar; 127(3):1528-36. PubMed ID: 20329853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.