BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15836327)

  • 1. Attractive and repulsive interactions among methanol molecules in supercritical state investigated by Raman spectroscopy and perturbed hard-sphere theory.
    Saitow K; Sasaki J
    J Chem Phys; 2005 Mar; 122(10):104502. PubMed ID: 15836327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solute-solvent intermolecular interactions in supercritical Xe, SF6, CO2, and CHF3 investigated by Raman spectroscopy: greatest attractive energy observed in supercritical Xe.
    Kajiya D; Saitow K
    J Phys Chem B; 2010 Jul; 114(26):8659-66. PubMed ID: 20540499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Difference of solute-solvent interactions of cis- and trans-1,2-dichloroethylene in supercritical CO2 investigated by raman spectroscopy.
    Kajiya D; Mouri Y; Saitow K
    J Phys Chem B; 2008 Jul; 112(27):7980-3. PubMed ID: 18553901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation structures of cis- and trans-1,2-dichloroethylene in supercritical CO2 investigated by Raman spectroscopy and attractive energy calculations.
    Kajiya D; Saitow K
    J Phys Chem B; 2009 Oct; 113(40):13291-9. PubMed ID: 19751054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopic study on the solvation of p-aminobenzonitrile in supercritical water and methanol.
    Osawa K; Hamamoto T; Fujisawa T; Terazima M; Sato H; Kimura Y
    J Phys Chem A; 2009 Apr; 113(13):3143-54. PubMed ID: 19320516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-selective solvation in supercritical CO2 observed by Raman spectroscopy: phenyl group leads to greater attractive energy than chloro group.
    Kajiya D; Saitow K
    J Phys Chem B; 2010 Dec; 114(50):16832-7. PubMed ID: 21114255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of attractive and repulsive interactions associated with ketones in supercritical CO2, based on Raman spectroscopy and theoretical calculations.
    Kajiya D; Saitow K
    J Chem Phys; 2013 Aug; 139(5):054509. PubMed ID: 23927272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time evolution of density fluctuation in the supercritical region. 2. Comparison of hydrogen- and non-hydrogen-bonded fluids.
    Kajiya D; Nishikawa K; Saitow K
    J Phys Chem A; 2005 Aug; 109(33):7365-70. PubMed ID: 16834103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effects on the local structure of p-nitroaniline in supercritical water and supercritical alcohols.
    Fujisawa T; Terazima M; Kimura Y
    J Phys Chem A; 2008 Jun; 112(24):5515-26. PubMed ID: 18481841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local density augmentation and dynamic properties of hydrogen-and non-hydrogen-bonded supercritical fluids: a molecular dynamics study.
    Skarmoutsos I; Samios J
    J Chem Phys; 2007 Jan; 126(4):044503. PubMed ID: 17286483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of inhomogeneous attractive and repulsive hard-core yukawa fluid: grand canonical Monte Carlo simulation and density functional theory study.
    You FQ; Yu YX; Gao GH
    J Phys Chem B; 2005 Mar; 109(8):3512-8. PubMed ID: 16851387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time evolution of density fluctuation in supercritical region. I. Non-hydrogen-bonded fluids studied by dynamic light scattering.
    Saitow K; Kajiya D; Nishikawa K
    J Phys Chem A; 2005 Jan; 109(1):83-91. PubMed ID: 16839091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant substitution effects in dipolar and non-dipolar supercritical fluids.
    Kajiya D; Saitow K
    J Chem Phys; 2011 Jun; 134(23):234508. PubMed ID: 21702568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of intermolecular interactions on local density inhomogeneities and related dynamics in pure supercritical fluids. A comparative molecular dynamics simulation study.
    Skarmoutsos I; Dellis D; Samios J
    J Phys Chem B; 2009 Mar; 113(9):2783-93. PubMed ID: 19708211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of local density augmentation for acetophenone N,N,N',N'-tetramethylbenzidine exciplex in supercritical water.
    Aizawa T; Kanakubo M; Hiejima Y; Ikushima Y; Smith RL
    J Phys Chem A; 2005 Aug; 109(33):7353-8. PubMed ID: 16834101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study.
    Ma H; Ma J
    J Chem Phys; 2011 Aug; 135(5):054504. PubMed ID: 21823709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic study of the solvation of decafluorobenzophenone ketyl radical and related compounds in 2-propanol at ambient to supercritical temperatures.
    Fujisawa T; Ito T; Terazima M; Kimura Y
    J Phys Chem A; 2008 Mar; 112(9):1914-21. PubMed ID: 18269267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen bonding in liquid and supercritical 1-octanol and 2-octanol assessed by near and midinfrared spectroscopy.
    Palombo F; Tassaing T; Danten Y; Besnard M
    J Chem Phys; 2006 Sep; 125(9):094503. PubMed ID: 16965093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relating linear vibrational spectroscopy to condensed-phase hydrogen-bonded structures: Liquid-to-supercritical water.
    Kandratsenka A; Schwarzer D; Vöhringer P
    J Chem Phys; 2008 Jun; 128(24):244510. PubMed ID: 18601351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of supercritical methanol of varying density from first principles simulations: hydrogen bond fluctuations, vibrational spectral diffusion, and orientational relaxation.
    Yadav VK; Chandra A
    J Chem Phys; 2013 Jun; 138(22):224501. PubMed ID: 23781799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.