These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Molecular based modeling of associating fluids via calculation of Wertheim cluster integrals. Kim HM; Schultz AJ; Kofke DA J Phys Chem B; 2010 Sep; 114(35):11515-24. PubMed ID: 20704286 [TBL] [Abstract][Full Text] [Related]
4. Local structures of fluid with discrete spherical potential: Theory and grand canonical ensemble Monte Carlo simulation. Zhou S; Lajovic A; Jamnik A J Chem Phys; 2008 Sep; 129(12):124503. PubMed ID: 19045032 [TBL] [Abstract][Full Text] [Related]
5. Efficient sampling for ab initio Monte Carlo simulation of molecular clusters using an interpolated potential energy surface. Nakayama A; Seki N; Taketsugu T J Chem Phys; 2009 Jan; 130(2):024107. PubMed ID: 19154019 [TBL] [Abstract][Full Text] [Related]
6. Virial coefficients of model alkanes. Schultz AJ; Kofke DA J Chem Phys; 2010 Sep; 133(10):104101. PubMed ID: 20849158 [TBL] [Abstract][Full Text] [Related]
7. A study of the pair and triplet structures of the quantum hard-sphere Yukawa fluid. Sesé LM J Chem Phys; 2009 Feb; 130(7):074504. PubMed ID: 19239299 [TBL] [Abstract][Full Text] [Related]
8. Structure of highly asymmetric hard-sphere mixtures: an efficient closure of the Ornstein-Zernike equations. Amokrane S; Ayadim A; Malherbe JG J Chem Phys; 2005 Nov; 123(17):174508. PubMed ID: 16375547 [TBL] [Abstract][Full Text] [Related]
9. Calculation of inhomogeneous-fluid cluster expansions with application to the hard-sphere∕hard-wall system. Yang JH; Schultz AJ; Errington JR; Kofke DA J Chem Phys; 2013 Apr; 138(13):134706. PubMed ID: 23574251 [TBL] [Abstract][Full Text] [Related]
10. Depletion effects in a mixture of hard and attractive colloids. Lajovic A; Tomsic M; Jamnik A J Chem Phys; 2009 Mar; 130(10):104101. PubMed ID: 19292517 [TBL] [Abstract][Full Text] [Related]
11. Virial equation of state of water based on Wertheim's association theory. Kim HM; Schultz AJ; Kofke DA J Phys Chem B; 2012 Dec; 116(48):14078-88. PubMed ID: 23148680 [TBL] [Abstract][Full Text] [Related]
12. Constructing a new closure theory based on the third-order Ornstein-Zernike equation and a study of the adsorption of simple fluids. Lee LL J Chem Phys; 2011 Nov; 135(20):204706. PubMed ID: 22128951 [TBL] [Abstract][Full Text] [Related]
13. Virial coefficients and equation of state of the penetrable sphere model. Viererblová L; Kolafa J; Labík S; Malijevský A Phys Chem Chem Phys; 2010 Jan; 12(1):254-62. PubMed ID: 20024467 [TBL] [Abstract][Full Text] [Related]
14. A perturbation method for the Ornstein-Zernike equation and the generic van der Waals equation of state for a square well potential model. Eu BC; Qin Y J Phys Chem B; 2007 Apr; 111(14):3716-26. PubMed ID: 17388524 [TBL] [Abstract][Full Text] [Related]
15. Density functional for ternary non-additive hard sphere mixtures. Schmidt M J Phys Condens Matter; 2011 Oct; 23(41):415101. PubMed ID: 21946780 [TBL] [Abstract][Full Text] [Related]
16. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. I. Thermodynamic results. Sesé LM J Chem Phys; 2007 Apr; 126(16):164508. PubMed ID: 17477615 [TBL] [Abstract][Full Text] [Related]
18. Inquiry into thermodynamic behavior of hard sphere plus repulsive barrier of finite height. Zhou S; Solana JR J Chem Phys; 2009 Nov; 131(20):204503. PubMed ID: 19947690 [TBL] [Abstract][Full Text] [Related]
19. A cluster algorithm for Monte Carlo simulation at constant pressure. Almarza NG J Chem Phys; 2009 May; 130(18):184106. PubMed ID: 19449907 [TBL] [Abstract][Full Text] [Related]
20. Phase separation of model adsorbates in random matrices. Pellicane G; Lee LL Phys Chem Chem Phys; 2007 Mar; 9(9):1064-9. PubMed ID: 17311148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]