These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 15836491)
1. Random amplified polymorphic DNA-PCR based cloning of markers to identify the beer-spoilage strains of Lactobacillus brevis, Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis. Fujii T; Nakashima K; Hayashi N J Appl Microbiol; 2005; 98(5):1209-20. PubMed ID: 15836491 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of conserved genetic markers and adjacent DNA regions identified in beer-spoilage lactic acid bacteria. Suzuki K; Ozaki K; Yamashita H Lett Appl Microbiol; 2004; 39(3):240-5. PubMed ID: 15287868 [TBL] [Abstract][Full Text] [Related]
3. Genetic characterization of non-spoilage variant isolated from beer-spoilage Lactobacillus brevis ABBC45. Suzuki K; Koyanagi M; Yamashita H J Appl Microbiol; 2004; 96(5):946-53. PubMed ID: 15078510 [TBL] [Abstract][Full Text] [Related]
4. Genetic marker for differentiating beer-spoilage ability of Lactobacillus paracollinoides strains. Suzuki K; Ozaki K; Yamashita H J Appl Microbiol; 2004; 97(4):712-8. PubMed ID: 15357720 [TBL] [Abstract][Full Text] [Related]
5. Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Weber DG; Sahm K; Polen T; Wendisch VF; Antranikian G J Appl Microbiol; 2008 Oct; 105(4):951-62. PubMed ID: 18785882 [TBL] [Abstract][Full Text] [Related]
6. A putative glucan synthase gene dps detected in exopolysaccharide-producing Pediococcus damnosus and Oenococcus oeni strains isolated from wine and cider. Walling E; Gindreau E; Lonvaud-Funel A Int J Food Microbiol; 2005 Jan; 98(1):53-62. PubMed ID: 15617800 [TBL] [Abstract][Full Text] [Related]
7. Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates. Haakensen M; Schubert A; Ziola B Int J Food Microbiol; 2009 Mar; 130(1):56-60. PubMed ID: 19187996 [TBL] [Abstract][Full Text] [Related]
8. Molecular characterization of lactic acid populations associated with wine spoilage. Beneduce L; Spano G; Vernile A; Tarantino D; Massa S J Basic Microbiol; 2004; 44(1):10-6. PubMed ID: 14768022 [TBL] [Abstract][Full Text] [Related]
9. Which lactic acid bacteria are responsible for histamine production in wine? Landete JM; Ferrer S; Pardo I J Appl Microbiol; 2005; 99(3):580-6. PubMed ID: 16108800 [TBL] [Abstract][Full Text] [Related]
10. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. Rossetti L; Giraffa G J Microbiol Methods; 2005 Nov; 63(2):135-44. PubMed ID: 15893395 [TBL] [Abstract][Full Text] [Related]
11. Genetic characterization and specific detection of beer-spoilage Lactobacillus sp. LA2 and related strains. Suzuki K; Koyanagi M; Yamashita H J Appl Microbiol; 2004; 96(4):677-83. PubMed ID: 15012805 [TBL] [Abstract][Full Text] [Related]
12. Development of detection medium for hard-to-culture beer-spoilage lactic acid bacteria. Suzuki K; Asano S; Iijima K; Kuriyama H; Kitagawa Y J Appl Microbiol; 2008 May; 104(5):1458-70. PubMed ID: 18070034 [TBL] [Abstract][Full Text] [Related]
13. Lactobacillus backii and Pediococcus damnosus isolated from 170-year-old beer recovered from a shipwreck lack the metabolic activities required to grow in modern lager beer. Kajala I; Bergsveinson J; Friesen V; Redekop A; Juvonen R; Storgårds E; Ziola B FEMS Microbiol Ecol; 2018 Jan; 94(1):. PubMed ID: 29126241 [TBL] [Abstract][Full Text] [Related]
14. Rapid detection and identification of beer-spoilage lactic acid bacteria by microcolony method. Asano S; Iijima K; Suzuki K; Motoyama Y; Ogata T; Kitagawa Y J Biosci Bioeng; 2009 Aug; 108(2):124-9. PubMed ID: 19619859 [TBL] [Abstract][Full Text] [Related]
15. Effects of morphological changes in beer-spoilage lactic acid bacteria on membrane filtration in breweries. Asano S; Suzuki K; Iijima K; Motoyama Y; Kuriyama H; Kitagawa Y J Biosci Bioeng; 2007 Oct; 104(4):334-8. PubMed ID: 18023809 [TBL] [Abstract][Full Text] [Related]
16. A specific oligonucleotide primer for the rapid detection of Lactobacillus lindneri by polymerase chain reaction. Yasui T; Okamoto T; Taguchi H Can J Microbiol; 1997 Feb; 43(2):157-63. PubMed ID: 9090105 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of exopolysaccharide and 3-hydroxypropionaldehyde-producing lactic acid bacteria in apple juice and apple cider by enterocin AS-48. Martínez-Viedma P; Abriouel H; Omar NB; Valdivia E; López RL; Gálvez A Food Chem Toxicol; 2008 Mar; 46(3):1143-51. PubMed ID: 18164531 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer. Hayashi N; Ito M; Horiike S; Taguchi H Appl Microbiol Biotechnol; 2001 May; 55(5):596-603. PubMed ID: 11414327 [TBL] [Abstract][Full Text] [Related]
19. [Use of molecular methods in food microbiology with the example of probiotic use of lactobacilli]. Klein G Berl Munch Tierarztl Wochenschr; 2003; 116(11-12):510-6. PubMed ID: 14655631 [TBL] [Abstract][Full Text] [Related]
20. Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Yousif NM; Huch M; Schuster T; Cho GS; Dirar HA; Holzapfel WH; Franz CM Food Microbiol; 2010 Sep; 27(6):757-68. PubMed ID: 20630317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]