BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15836612)

  • 1. Ca2+-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I.
    Votyakova TV; Reynolds IJ
    J Neurochem; 2005 May; 93(3):526-37. PubMed ID: 15836612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress is involved in the permeabilization of the inner membrane of brain mitochondria exposed to hypoxia/reoxygenation and low micromolar Ca2+.
    Schild L; Reiser G
    FEBS J; 2005 Jul; 272(14):3593-601. PubMed ID: 16008559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III.
    Belyaeva EA; Glazunov VV; Korotkov SM
    Chem Biol Interact; 2004 Dec; 150(3):253-70. PubMed ID: 15560892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver.
    Andreyev A; Fiskum G
    Cell Death Differ; 1999 Sep; 6(9):825-32. PubMed ID: 10510464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotenone increases glutamate-induced dopamine release but does not affect hydroxyl-free radical formation in rat striatum.
    Leng A; Feldon J; Ferger B
    Synapse; 2003 Dec; 50(3):240-50. PubMed ID: 14515342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition.
    Hansson MJ; Månsson R; Morota S; Uchino H; Kallur T; Sumi T; Ishii N; Shimazu M; Keep MF; Jegorov A; Elmér E
    Free Radic Biol Med; 2008 Aug; 45(3):284-94. PubMed ID: 18466779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species.
    Chen Y; McMillan-Ward E; Kong J; Israels SJ; Gibson SB
    J Cell Sci; 2007 Dec; 120(Pt 23):4155-66. PubMed ID: 18032788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.
    Kaur P; Radotra B; Minz RW; Gill KD
    Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species (ROS) in the human neocortex: role of aging and cognition.
    Brawek B; Löffler M; Wagner K; Huppertz HJ; Wendling AS; Weyerbrock A; Jackisch R; Feuerstein TJ
    Brain Res Bull; 2010 Mar; 81(4-5):484-90. PubMed ID: 19854245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin.
    Petrosillo G; Matera M; Casanova G; Ruggiero FM; Paradies G
    Neurochem Int; 2008 Nov; 53(5):126-31. PubMed ID: 18657582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potential-related effect of calcium on reactive oxygen species generation in isolated brain mitochondria.
    Komary Z; Tretter L; Adam-Vizi V
    Biochim Biophys Acta; 2010; 1797(6-7):922-8. PubMed ID: 20230776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes.
    González A; Pariente JA; Salido GM
    Brain Res; 2007 Oct; 1178():28-37. PubMed ID: 17888892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage.
    Indo HP; Davidson M; Yen HC; Suenaga S; Tomita K; Nishii T; Higuchi M; Koga Y; Ozawa T; Majima HJ
    Mitochondrion; 2007; 7(1-2):106-18. PubMed ID: 17307400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate-induced free radical formation in rat brain synaptosomes is not dependent on intrasynaptosomal mitochondria membrane potential.
    Alekseenko AV; Lemeshchenko VV; Pekun TG; Waseem TV; Fedorovich SV
    Neurosci Lett; 2012 Apr; 513(2):238-42. PubMed ID: 22387155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation.
    Tahara EB; Navarete FD; Kowaltowski AJ
    Free Radic Biol Med; 2009 May; 46(9):1283-97. PubMed ID: 19245829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition.
    Maciel EN; Kowaltowski AJ; Schwalm FD; Rodrigues JM; Souza DO; Vercesi AE; Wajner M; Castilho RF
    J Neurochem; 2004 Sep; 90(5):1025-35. PubMed ID: 15312158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrolein induces oxidative stress in brain mitochondria.
    Luo J; Shi R
    Neurochem Int; 2005 Feb; 46(3):243-52. PubMed ID: 15670641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of mitochondrial alteration and reactive oxygen species generation in Taiwan cobra cardiotoxin-induced apoptotic death of human neuroblastoma SK-N-SH cells.
    Chen KC; Lin SR; Chang LS
    Toxicon; 2008 Aug; 52(2):361-8. PubMed ID: 18619991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of complex III promotes loss of Ca2+ dependence for mitochondrial superoxide formation and permeability transition evoked by peroxynitrite.
    Guidarelli A; Cerioni L; Cantoni O
    J Cell Sci; 2007 Jun; 120(Pt 11):1908-14. PubMed ID: 17504811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.