BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15836734)

  • 1. Mutational effect for stability in a conserved region of thermolysin.
    Matsumiya Y; Nishikawa K; Inouye K; Kubo M
    Lett Appl Microbiol; 2005; 40(5):329-34. PubMed ID: 15836734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site.
    Matsumiya Y; Nishikawa K; Aoshima H; Inouye K; Kubo M
    J Biochem; 2004 Apr; 135(4):547-53. PubMed ID: 15115781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further stabilization of Leu¹⁵⁵ mutant thermolysins by mutation of an autodegradation site.
    Matsumiya Y; Murata N; Inouye K; Kubo M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):735-43. PubMed ID: 22139731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity.
    Tatsumi C; Hashida Y; Yasukawa K; Inouye K
    J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific interactions and binding energies between thermolysin and potent inhibitors: molecular simulations based on ab initio molecular orbital method.
    Hirakawa T; Fujita S; Ohyama T; Dedachi K; Khan MT; Sylte I; Kurita N
    J Mol Graph Model; 2012 Mar; 33():1-11. PubMed ID: 22112671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of site-directed mutagenesis of Asn116 in the β-hairpin of the N-terminal domain of thermolysin on its activity and stability.
    Menach E; Yasukawa K; Inouye K
    J Biochem; 2012 Sep; 152(3):231-9. PubMed ID: 22648563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization.
    Kawasaki Y; Yasukawa K; Inouye K
    J Biochem; 2013 Jan; 153(1):85-92. PubMed ID: 23087322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc protease of Bacillus subtilis var. amylosacchariticus: construction of a three-dimensional model and comparison with thermolysin.
    Tsuru D; Imajo S; Morikawa S; Yoshimoto T; Ishiguro M
    J Biochem; 1993 Jan; 113(1):101-5. PubMed ID: 8454566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of Val 315 located in the C-terminal region of thermolysin in its expression in Escherichia coli and its thermal stability.
    Kojima K; Nakata H; Inouye K
    Biochim Biophys Acta; 2014 Feb; 1844(2):330-8. PubMed ID: 24192395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases.
    Vriend G; Eijsink V
    J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific interactions and binding free energies between thermolysin and dipeptides: molecular simulations combined with ab initio molecular orbital and classical vibrational analysis.
    Dedachi K; Hirakawa T; Fujita S; Khan MT; Sylte I; Kurita N
    J Comput Chem; 2011 Nov; 32(14):3047-57. PubMed ID: 21815174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins of the different metal preferences of Escherichia coli peptide deformylase and Bacillus thermoproteolyticus thermolysin: a comparative quantum mechanical/molecular mechanical study.
    Dong M; Liu H
    J Phys Chem B; 2008 Aug; 112(33):10280-90. PubMed ID: 18651766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for the extracellular production of recombinant thermolysin by co-expressing the mature sequence and pro-sequence in Escherichia coli.
    Yasukawa K; Kusano M; Inouye K
    Protein Eng Des Sel; 2007 Aug; 20(8):375-83. PubMed ID: 17616558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability.
    Takita T; Aono T; Sakurama H; Itoh T; Wada T; Minoda M; Yasukawa K; Inouye K
    Biochim Biophys Acta; 2008 Mar; 1784(3):481-8. PubMed ID: 18187054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of structural determinants of the stability of thermolysin-like proteases by molecular modelling and site-directed mutagenesis.
    Veltman OR; Vriend G; Middelhoven PJ; van den Burg B; Venema G; Eijsink VG
    Protein Eng; 1996 Dec; 9(12):1181-9. PubMed ID: 9010931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Use of frequency analysis for localization of functionally important regions of thermolysin].
    Gabriélian AE; Kostrov SA; Kirpichnikov MP
    Mol Biol (Mosk); 1994; 28(5):1044-51. PubMed ID: 7990826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis.
    Priyadharshini R; Gunasekaran P
    Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the catalytic roles of the polypeptide regions in the active site of thermolysin and generation of the thermolysin variants with high activity and stability.
    Kusano M; Yasukawa K; Inouye K
    J Biochem; 2009 Jan; 145(1):103-13. PubMed ID: 18974160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.