BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15837140)

  • 1. D2 autoreceptor inhibition reveals oxygen-glucose deprivation-induced release of dopamine in guinea-pig cochlea.
    Halmos G; Doleviczényi Z; Répássy G; Kittel A; Vizi ES; Lendvai B; Zelles T
    Neuroscience; 2005; 132(3):801-9. PubMed ID: 15837140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurochemical evidence of dopamine release by lateral olivocochlear efferents and its presynaptic modulation in guinea-pig cochlea.
    Gáborján A; Lendvai B; Vizi ES
    Neuroscience; 1999 Apr; 90(1):131-8. PubMed ID: 10188940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-HT6/7 receptor antagonists facilitate dopamine release in the cochlea via a GABAergic disinhibitory mechanism.
    Doleviczényi Z; Vizi ES; Gacsályi I; Pallagi K; Volk B; Hársing LG; Halmos G; Lendvai B; Zelles T
    Neurochem Res; 2008 Nov; 33(11):2364-72. PubMed ID: 18663573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of glutamate and dopamine release from isolated guinea pig cochlea.
    Halmos G; Lendvai B; Gáborján A; Baranyi M; Szabó LZ; Csokonai Vitéz L
    Neurochem Int; 2002 Mar; 40(3):243-8. PubMed ID: 11741007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine D3 autoreceptor inhibition enhances cocaine potency at the dopamine transporter.
    McGinnis MM; Siciliano CA; Jones SR
    J Neurochem; 2016 Sep; 138(6):821-9. PubMed ID: 27393374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores.
    Schmitz Y; Lee CJ; Schmauss C; Gonon F; Sulzer D
    J Neurosci; 2001 Aug; 21(16):5916-24. PubMed ID: 11487614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.
    Halmos G; Horváth T; Polony G; Fekete A; Kittel A; Vizi ES; van der Laan BF; Zelles T; Lendvai B
    Neuroscience; 2008 Jun; 154(2):796-803. PubMed ID: 18462886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effect of quinpirole and 7-OH-DPAT on the spontaneous [(3)H]-dopamine efflux from rat striatal synaptosomes.
    García-Sanz A; Badia A; Clos MV
    Synapse; 2001 Apr; 40(1):65-73. PubMed ID: 11170223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Veratridine-evoked release of dopamine from guinea pig isolated cochlea.
    Halmos G; Gáborján A; Lendvai B; Répássy G; Szabó LZ; Vizi ES
    Hear Res; 2000 Jun; 144(1-2):89-96. PubMed ID: 10831868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear dopamine release is modulated by group II metabotropic glutamate receptors via GABAergic neurotransmission.
    Doleviczényi Z; Halmos G; Répássy G; Vizi ES; Zelles T; Lendvai B
    Neurosci Lett; 2005 Sep; 385(2):93-8. PubMed ID: 15927369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native human neocortex release-regulating dopamine D2 type autoreceptors are dopamine D2 subtype.
    Fedele E; Fontana G; Munari C; Cossu M; Raiteri M
    Eur J Neurosci; 1999 Jul; 11(7):2351-8. PubMed ID: 10383624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback control of mesolimbic somatodendritic dopamine release in rat brain.
    Rahman S; McBride WJ
    J Neurochem; 2000 Feb; 74(2):684-92. PubMed ID: 10646520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic action of neurotensin on dopamine release through inhibition of D(2) receptor function.
    Fawaz CS; Martel P; Leo D; Trudeau LE
    BMC Neurosci; 2009 Aug; 10():96. PubMed ID: 19682375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halothane decreases impulse-dependent but not cytoplasmic release of dopamine from rat striatal slices.
    Adachi YU; Watanabe K; Higuchi H; Satoh T; Zsilla G
    Brain Res Bull; 2001 Dec; 56(6):521-4. PubMed ID: 11786236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modafinil inhibits rat midbrain dopaminergic neurons through D2-like receptors.
    Korotkova TM; Klyuch BP; Ponomarenko AA; Lin JS; Haas HL; Sergeeva OA
    Neuropharmacology; 2007 Feb; 52(2):626-33. PubMed ID: 17070873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Ca2+ dependence and time course of somatodendritic dopamine release: substantia nigra versus striatum.
    Chen BT; Rice ME
    J Neurosci; 2001 Oct; 21(19):7841-7. PubMed ID: 11567075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for presynaptic mechanisms in the actions of nomifensine and haloperidol.
    Garris PA; Budygin EA; Phillips PE; Venton BJ; Robinson DL; Bergstrom BP; Rebec GV; Wightman RM
    Neuroscience; 2003; 118(3):819-29. PubMed ID: 12710989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study.
    Wu Q; Reith ME; Walker QD; Kuhn CM; Carroll FI; Garris PA
    J Neurosci; 2002 Jul; 22(14):6272-81. PubMed ID: 12122086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profound changes in dopaminergic neurotransmission in the prefrontal cortex in response to flattening of the diurnal glucocorticoid rhythm: implications for bipolar disorder.
    Minton GO; Young AH; McQuade R; Fairchild G; Ingram CD; Gartside SE
    Neuropsychopharmacology; 2009 Sep; 34(10):2265-74. PubMed ID: 19494803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The D(3) dopamine receptor inhibits dopamine release in PC-12/hD3 cells by autoreceptor signaling via PP-2B, CK1, and Cdk-5.
    Chen PC; Lao CL; Chen JC
    J Neurochem; 2009 Aug; 110(4):1180-90. PubMed ID: 19522735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.