BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15837421)

  • 1. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit.
    Radonjic M; Andrau JC; Lijnzaad P; Kemmeren P; Kockelkorn TT; van Leenen D; van Berkum NL; Holstege FC
    Mol Cell; 2005 Apr; 18(2):171-83. PubMed ID: 15837421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide RNA polymerase II: not genes only!
    Koch F; Jourquin F; Ferrier P; Andrau JC
    Trends Biochem Sci; 2008 Jun; 33(6):265-73. PubMed ID: 18467100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions.
    Zhu X; Wirén M; Sinha I; Rasmussen NN; Linder T; Holmberg S; Ekwall K; Gustafsson CM
    Mol Cell; 2006 Apr; 22(2):169-78. PubMed ID: 16630887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA.
    Andrau JC; van de Pasch L; Lijnzaad P; Bijma T; Koerkamp MG; van de Peppel J; Werner M; Holstege FC
    Mol Cell; 2006 Apr; 22(2):179-92. PubMed ID: 16630888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of gene expression by RNA polymerase II in response to DNA damage.
    Heo JH; Jeong SJ; Seol JW; Kim HJ; Han JW; Lee HW; Cho EJ
    Biochem Biophys Res Commun; 2004 Dec; 325(3):892-8. PubMed ID: 15541374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of the effects of location and number of stress response elements on gene expression in Saccharomyces cerevisiae.
    Yoshikawa K; Furusawa C; Hirasawa T; Shimizu H
    J Biosci Bioeng; 2008 Nov; 106(5):507-10. PubMed ID: 19111649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation.
    Rossignol T; Dulau L; Julien A; Blondin B
    Yeast; 2003 Dec; 20(16):1369-85. PubMed ID: 14663829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RSC primes the quiescent genome for hypertranscription upon cell-cycle re-entry.
    Cucinotta CE; Dell RH; Braceros KC; Tsukiyama T
    Elife; 2021 May; 10():. PubMed ID: 34042048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.
    Minato T; Yoshida S; Ishiguro T; Shimada E; Mizutani S; Kobayashi O; Yoshimoto H
    Yeast; 2009 Mar; 26(3):147-65. PubMed ID: 19243081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale identification of nucleosome positions in S. cerevisiae.
    Yuan GC; Liu YJ; Dion MF; Slack MD; Wu LF; Altschuler SJ; Rando OJ
    Science; 2005 Jul; 309(5734):626-30. PubMed ID: 15961632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paracoccidioides brasiliensis RNA biogenesis apparatus revealed by functional genome analysis.
    Albuquerque P; Baptista AJ; Derengowsky Lda S; Procópio L; Nicola AM; Arraes FB; Souza DP; Kyaw CM; Silva-Pereira I
    Genet Mol Res; 2005 Jun; 4(2):251-72. PubMed ID: 16110445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tumor suppressor p53 associates with gene coding regions and co-traverses with elongating RNA polymerase II in an in vivo model.
    Balakrishnan SK; Gross DS
    Oncogene; 2008 Apr; 27(19):2661-72. PubMed ID: 18026140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
    Govind CK; Yoon S; Qiu H; Govind S; Hinnebusch AG
    Mol Cell Biol; 2005 Jul; 25(13):5626-38. PubMed ID: 15964818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poised RNA polymerase II gives pause for thought.
    Margaritis T; Holstege FC
    Cell; 2008 May; 133(4):581-4. PubMed ID: 18485867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [ChIP on chip for transcriptional regulatory network analysis].
    Miura H; Tomaru Y
    Tanpakushitsu Kakusan Koso; 2004 Dec; 49(17 Suppl):2710-6. PubMed ID: 15669244
    [No Abstract]   [Full Text] [Related]  

  • 16. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism.
    van Bakel H; Strengman E; Wijmenga C; Holstege FC
    Physiol Genomics; 2005 Aug; 22(3):356-67. PubMed ID: 15886332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes.
    Martinez MJ; Roy S; Archuletta AB; Wentzell PD; Anna-Arriola SS; Rodriguez AL; Aragon AD; Quiñones GA; Allen C; Werner-Washburne M
    Mol Biol Cell; 2004 Dec; 15(12):5295-305. PubMed ID: 15456898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling genome-wide histone modifications and variants by ChIP-chip on tiling microarrays in S. cerevisiae.
    Bataille AR; Robert F
    Methods Mol Biol; 2009; 543():267-79. PubMed ID: 19378172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a novel oligonucleotide array-based transcription factor assay platform for genome-wide active transcription factor profiling in Saccharomyces cerevisiae.
    Zhao Y; Shao W; Wei H; Qiao J; Lu Y; Sun Y; Mitchelson K; Cheng J; Zhou Y
    J Proteome Res; 2008 Mar; 7(3):1315-25. PubMed ID: 18220337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.