These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 15837497)
1. Nodoids and toroids: comparison of two geometries for the meniscus profile of a wetting liquid between two touching isolated spheres and extensions to the model of a collection of packed spheres. Mayer RP; Stowe RA J Colloid Interface Sci; 2005 May; 285(2):781-8. PubMed ID: 15837497 [TBL] [Abstract][Full Text] [Related]
2. Packed uniform sphere model for solids: interstitial access opening sizes and pressure deficiencies for wetting liquids with comparison to reported experimental results. Mayer RP; Stowe RA J Colloid Interface Sci; 2006 Feb; 294(1):139-50. PubMed ID: 16085078 [TBL] [Abstract][Full Text] [Related]
3. Modeling the Evolution and Rupture of Pendular Liquid Bridges in the Presence of Large Wetting Hysteresis. Pepin X; Rossetti D; Iveson SM; Simons SJ J Colloid Interface Sci; 2000 Dec; 232(2):289-297. PubMed ID: 11097763 [TBL] [Abstract][Full Text] [Related]
4. A partial equilibrium theory for liquids bonded to immobile solids. Searcy AW; Beruto DT; Barberis F J Chem Phys; 2009 May; 130(18):184713. PubMed ID: 19449949 [TBL] [Abstract][Full Text] [Related]
5. Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Rabinovich YI; Esayanur MS; Moudgil BM Langmuir; 2005 Nov; 21(24):10992-7. PubMed ID: 16285763 [TBL] [Abstract][Full Text] [Related]
6. A mathematical model for the interactions between non-identical rough spheres, liquid bridge and liquid vapor. Nazemi AH; Majnooni-Heris A J Colloid Interface Sci; 2012 Mar; 369(1):402-10. PubMed ID: 22189390 [TBL] [Abstract][Full Text] [Related]
7. Recent progress in the determination of solid surface tensions from contact angles. Tavana H; Neumann AW Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380 [TBL] [Abstract][Full Text] [Related]
15. Indirect methods to measure wetting and contact angles on spherical convex and concave surfaces. Extrand CW; Moon SI Langmuir; 2012 May; 28(20):7775-9. PubMed ID: 22568478 [TBL] [Abstract][Full Text] [Related]
16. Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores. Unsal E; Mason G; Morrow NR; Ruth DW Langmuir; 2009 Apr; 25(6):3387-95. PubMed ID: 19228030 [TBL] [Abstract][Full Text] [Related]
17. The uniform capillary model for packed beds and particle wettability. Stevens N; Ralston J; Sedev R J Colloid Interface Sci; 2009 Sep; 337(1):162-9. PubMed ID: 19486994 [TBL] [Abstract][Full Text] [Related]
18. The Effects of Void Geometry and Contact Angle on the Absorption of Liquids into Porous Calcium Carbonate Structures. Ridgway CJ; Schoelkopf J; Matthews GP; Gane PA; James PW J Colloid Interface Sci; 2001 Jul; 239(2):417-431. PubMed ID: 11427007 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy. Lee EK; Fox T; Crocker I Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912 [TBL] [Abstract][Full Text] [Related]
20. Shape of the capillary meniscus around an electrically charged particle at a fluid interface: comparison of theory and experiment. Danov KD; Kralchevsky PA; Boneva MP Langmuir; 2006 Mar; 22(6):2653-67. PubMed ID: 16519466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]