BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 15837567)

  • 1. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks.
    D'Arcangelo G; Panuccio G; Tancredi V; Avoli M
    Neurobiol Dis; 2005; 19(1-2):119-28. PubMed ID: 15837567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic optical signals and electrographic seizures in the rat limbic system.
    D'Arcangelo G; Tancredi V; Avoli M
    Neurobiol Dis; 2001 Dec; 8(6):993-1005. PubMed ID: 11741395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rat subicular networks gate hippocampal output activity in an in vitro model of limbic seizures.
    Benini R; Avoli M
    J Physiol; 2005 Aug; 566(Pt 3):885-900. PubMed ID: 15932889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interictal-ictal interactions and limbic seizure generation.
    Avoli M; Barbarosie M
    Rev Neurol (Paris); 1999 Jul; 155(6-7):468-71. PubMed ID: 10472661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled pulse delivery of electrical stimulation differentially reduces epileptiform activity in Mg2+-free-treated hippocampal slices.
    Albensi BC; Toupin JD; Oikawa K; Oliver DR
    Brain Res; 2008 Aug; 1226():163-72. PubMed ID: 18582443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro.
    Schiller Y; Bankirer Y
    J Neurophysiol; 2007 Mar; 97(3):1887-902. PubMed ID: 17151229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neocortical hyperexcitability in a genetic model of absence seizures and its reduction by levetiracetam.
    D'Arcangelo G; D'Antuono M; Tancredi V; Avoli M
    Epilepsia; 2006 Jul; 47(7):1144-52. PubMed ID: 16886977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limbic network interactions leading to hyperexcitability in a model of temporal lobe epilepsy.
    D'Antuono M; Benini R; Biagini G; D'Arcangelo G; Barbarosie M; Tancredi V; Avoli M
    J Neurophysiol; 2002 Jan; 87(1):634-9. PubMed ID: 11784779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced ictogenic potential of 4-aminopyridine in the perirhinal and entorhinal cortex of kainate-treated chronic epileptic rats.
    Zahn RK; Tolner EA; Derst C; Gruber C; Veh RW; Heinemann U
    Neurobiol Dis; 2008 Feb; 29(2):186-200. PubMed ID: 17942314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-dependent activation pattern in the rat hippocampus, a simultaneous electrophysiological and fMRI study.
    Angenstein F; Kammerer E; Niessen HG; Frey JU; Scheich H; Frey S
    Neuroimage; 2007 Oct; 38(1):150-63. PubMed ID: 17728153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of phase synchronization of neuronal activity in the rat hippocampus.
    Lian J; Shuai J; Durand DM
    J Neural Eng; 2004 Mar; 1(1):46-54. PubMed ID: 15876622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of in vitro ictogenesis by low-frequency stimulation coincides with increased epileptiform response latency.
    Kano T; Inaba Y; D'Antuono M; Biagini G; Levésque M; Avoli M
    J Neurophysiol; 2015 Jul; 114(1):21-8. PubMed ID: 25925325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic Low-Frequency Stimulation of Specific Neuronal Populations Abates Ictogenesis.
    Shiri Z; Lévesque M; Etter G; Manseau F; Williams S; Avoli M
    J Neurosci; 2017 Mar; 37(11):2999-3008. PubMed ID: 28209738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating the epileptic brain using stimulation: a review of experimental and clinical studies.
    Saillet S; Langlois M; Feddersen B; Minotti L; Vercueil L; Chabardès S; David O; Depaulis A; Deransart C; Kahane P
    Epileptic Disord; 2009 Jun; 11(2):100-12. PubMed ID: 19473948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks.
    Chiu AW; Jahromi SS; Khosravani H; Carlen PL; Bardakjian BL
    J Neural Eng; 2006 Mar; 3(1):9-20. PubMed ID: 16510938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans.
    Yu T; Wang X; Li Y; Zhang G; Worrell G; Chauvel P; Ni D; Qiao L; Liu C; Li L; Ren L; Wang Y
    Brain; 2018 Sep; 141(9):2631-2643. PubMed ID: 29985998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early developmental alterations of low-Mg2+ -induced epileptiform activity in the intact corticohippocampal formation of the newborn mouse in vitro.
    Moser J; Kilb W; Werhahn KJ; Luhmann HJ
    Brain Res; 2006 Mar; 1077(1):170-7. PubMed ID: 16510134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of amygdala networks in epileptiform synchronization in vitro.
    Benini R; D'Antuono M; Pralong E; Avoli M
    Neuroscience; 2003; 120(1):75-84. PubMed ID: 12849742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep brain stimulation of the substantia nigra pars reticulata exerts long lasting suppression of amygdala-kindled seizures.
    Shi LH; Luo F; Woodward D; Chang JY
    Brain Res; 2006 May; 1090(1):202-7. PubMed ID: 16647692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.