These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15837708)

  • 1. Using a suppression subtractive library-based approach to identify tobacco genes regulated in response to short-term sulphur deficit.
    Wawrzyńska A; Lewandowska M; Hawkesford MJ; Sirko A
    J Exp Bot; 2005 Jun; 56(416):1575-90. PubMed ID: 15837708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation.
    Wawrzyńska A; Lewandowska M; Sirko A
    J Exp Bot; 2010 Mar; 61(3):889-900. PubMed ID: 20018902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize.
    Coneva V; Zhu T; Colasanti J
    J Exp Bot; 2007; 58(13):3679-93. PubMed ID: 17928372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale phenotyping of transgenic tobacco plants (Nicotiana tabacum) to identify essential leaf functions.
    Lein W; Usadel B; Stitt M; Reindl A; Ehrhardt T; Sonnewald U; Börnke F
    Plant Biotechnol J; 2008 Apr; 6(3):246-63. PubMed ID: 18086234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation.
    Popova OV; Yang O; Dietz KJ; Golldack D
    Gene; 2008 Nov; 423(2):142-8. PubMed ID: 18703123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analyses of the gene expression profiles of Arabidopsis intact plant and cultured cells.
    Iwase A; Ishii H; Aoyagi H; Ohme-Takagi M; Tanaka H
    Biotechnol Lett; 2005 Aug; 27(15):1097-103. PubMed ID: 16132859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations?
    Kim SJ; Kim KW; Cho MH; Franceschi VR; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1957-74. PubMed ID: 17467016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The abundance of a single domain cyclophilin in Solanaceae is regulated as a function of organ type and high temperature and not by other environmental constraints.
    Kiełbowicz-Matuk A; Rey P; Rorat T
    Physiol Plant; 2007 Nov; 131(3):387-98. PubMed ID: 18251878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana.
    Bray EA
    J Exp Bot; 2004 Nov; 55(407):2331-41. PubMed ID: 15448178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco.
    Häkkinen ST; Tilleman S; Swiatek A; De Sutter V; Rischer H; Vanhoutte I; Van Onckelen H; Hilson P; Inzé D; Oksman-Caldentey KM; Goossens A
    Phytochemistry; 2007; 68(22-24):2773-85. PubMed ID: 18001808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation.
    Ehlting J; Mattheus N; Aeschliman DS; Li E; Hamberger B; Cullis IF; Zhuang J; Kaneda M; Mansfield SD; Samuels L; Ritland K; Ellis BE; Bohlmann J; Douglas CJ
    Plant J; 2005 Jun; 42(5):618-40. PubMed ID: 15918878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis.
    Van Hoewyk D; Takahashi H; Inoue E; Hess A; Tamaoki M; Pilon-Smits EA
    Physiol Plant; 2008 Feb; 132(2):236-53. PubMed ID: 18251864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative microarray analysis of programmed cell death induced by proteasome malfunction and hypersensitive response in plants.
    Kim M; Lee S; Park K; Jeong EJ; Ryu CM; Choi D; Pai HS
    Biochem Biophys Res Commun; 2006 Apr; 342(2):514-21. PubMed ID: 16487931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana.
    Kamauchi S; Nakatani H; Nakano C; Urade R
    FEBS J; 2005 Jul; 272(13):3461-76. PubMed ID: 15978049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response.
    Nikiforova VJ; Daub CO; Hesse H; Willmitzer L; Hoefgen R
    J Exp Bot; 2005 Jul; 56(417):1887-96. PubMed ID: 15911562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles.
    Terakura S; Kitakura S; Ishikawa M; Ueno Y; Fujita T; Machida C; Wabiko H; Machida Y
    Plant Cell Physiol; 2006 May; 47(5):664-72. PubMed ID: 16547081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.