BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 15837806)

  • 1. Identification of functional transcription factor binding sites using closely related Saccharomyces species.
    Doniger SW; Huh J; Fay JC
    Genome Res; 2005 May; 15(5):701-9. PubMed ID: 15837806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae.
    Ishida C; Aranda C; Valenzuela L; Riego L; Deluna A; Recillas-Targa F; Filetici P; López-Revilla R; González A
    Mol Microbiol; 2006 Mar; 59(6):1790-806. PubMed ID: 16553884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergence of transcription factor binding sites across related yeast species.
    Borneman AR; Gianoulis TA; Zhang ZD; Yu H; Rozowsky J; Seringhaus MR; Wang LY; Gerstein M; Snyder M
    Science; 2007 Aug; 317(5839):815-9. PubMed ID: 17690298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Saccharomyces cerevisiae CLB5 promoter contains two middle sporulation elements (MSEs) that are differentially regulated during sporulation.
    Raithatha SA; Stuart DT
    Yeast; 2008 Apr; 25(4):259-72. PubMed ID: 18327887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Position specific variation in the rate of evolution in transcription factor binding sites.
    Moses AM; Chiang DY; Kellis M; Lander ES; Eisen MB
    BMC Evol Biol; 2003 Aug; 3():19. PubMed ID: 12946282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for identifying transcription factor binding sites in yeast.
    Tsai HK; Huang GT; Chou MY; Lu HH; Li WH
    Bioinformatics; 2006 Jul; 22(14):1675-81. PubMed ID: 16644789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription.
    Steinfeld I; Shamir R; Kupiec M
    Nat Genet; 2007 Mar; 39(3):303-9. PubMed ID: 17325681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting.
    Berezikov E; Guryev V; Plasterk RH; Cuppen E
    Genome Res; 2004 Jan; 14(1):170-8. PubMed ID: 14672977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics on SOX2 orthologs.
    Katoh Y; Katoh M
    Oncol Rep; 2005 Sep; 14(3):797-800. PubMed ID: 16077994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny based discovery of regulatory elements.
    Gertz J; Fay JC; Cohen BA
    BMC Bioinformatics; 2006 May; 7():266. PubMed ID: 16716228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing transcription factor motif drift from noisy decoy sequences.
    Reddy TE; DeLisi C; Shakhnovich BE
    Genome Inform; 2005; 16(1):59-67. PubMed ID: 16362907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting transcription factor binding sites using local over-representation and comparative genomics.
    Defrance M; Touzet H
    BMC Bioinformatics; 2006 Aug; 7():396. PubMed ID: 16945132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of multi-species conserved sequences.
    Margulies EH; Blanchette M; ; Haussler D; Green ED
    Genome Res; 2003 Dec; 13(12):2507-18. PubMed ID: 14656959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncoding sequences conserved in a limited number of mammals in the SIM2 interval are frequently functional.
    Frazer KA; Tao H; Osoegawa K; de Jong PJ; Chen X; Doherty MF; Cox DR
    Genome Res; 2004 Mar; 14(3):367-72. PubMed ID: 14962988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paleogenomics or the search for remnant duplicated copies of the yeast DUP240 gene family in intergenic areas.
    Wirth B; Louis VL; Potier S; Souciet JL; Despons L
    Mol Biol Evol; 2005 Sep; 22(9):1764-71. PubMed ID: 15917500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics reveals unusually long motifs in mammalian genomes.
    Jones NC; Pevzner PA
    Bioinformatics; 2006 Jul; 22(14):e236-42. PubMed ID: 16873477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.