BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15838)

  • 1. Studies of glutamate dehydrogenase. Methionine-169: the preferentially carboxymethylated residue.
    David M; Rasched IR; Sund H
    Eur J Biochem; 1977 Apr; 74(2):379-85. PubMed ID: 15838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of glutamate dehydrogenase: analysis of functional areas and functional groups.
    Hucho F; Rasched I; Sund H
    Eur J Biochem; 1975 Mar; 52(2):221-30. PubMed ID: 240678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and reactivity of sulfhydryl groups of rat liver glycine methyltransferase.
    Fujioka M; Takata Y; Konishi K; Ogawa H
    Biochemistry; 1987 Sep; 26(18):5696-702. PubMed ID: 3676278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity labelling of the estrogen binding site of glutamate dehydrogenase with iodoacetyldiethylstilbestrol. Selective alkylation of cysteine-89.
    Michel F; Pons M; Descomps B; Crastes de Paulet A
    Eur J Biochem; 1978 Mar; 84(1):267-74. PubMed ID: 25768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase of Neurospora.
    Blumenthal KM; Moon K; Smith EL
    J Biol Chem; 1975 May; 250(10):3644-54. PubMed ID: 236297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of glutamate dehydrogenase. Identification of an amino group involved in the substrate binding.
    Rasched I; Jörnvall H; Sund H
    Eur J Biochem; 1974 Feb; 41(3):603-6. PubMed ID: 4856315
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of cysteine residues in the catalytic activity of glycerol-3-phosphate dehydrogenase.
    Smith RE; MacQuarrie R
    Biochim Biophys Acta; 1979 Apr; 567(2):269-77. PubMed ID: 36150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an essential cysteine residue in pyridoxal phosphatase from human erythrocytes.
    Gao G; Fonda ML
    J Biol Chem; 1994 Mar; 269(11):8234-9. PubMed ID: 8132548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the amino acid residue modified in Bacillus stearothermophilus alcohol dehydrogenase by the NAD+ analogue 4-(3-bromoacetylpyridinio)butyldiphosphoadenosine.
    Jeck R; Woenckhaus C; Harris JJ; Runswick MJ
    Eur J Biochem; 1979 Jan; 93(1):57-64. PubMed ID: 436831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphosphopyridine nucleotide specific isocitrate dehydrogenase from Azotobacter vinelandii. Alkylation of a specific methionine residue and amino acid sequence of the peptide containing this residue.
    Edwards DJ; Heinrikson RL; Chung AE
    Biochemistry; 1974 Feb; 13(4):677-83. PubMed ID: 4149369
    [No Abstract]   [Full Text] [Related]  

  • 11. The structure of dihydrofolate reductase. Identification of methionine residues carboxymethylated by iodoacetate with loss of catalytic activity.
    Gleisner JM; Blakley RL
    Eur J Biochem; 1975 Jun; 55(1):141-6. PubMed ID: 809271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of the N-ethylmaleimide reactive cysteine in the beef heart mitochondrial ADP/ATP carrier protein.
    Boulay F; Vignais PV
    Biochemistry; 1984 Sep; 23(20):4807-12. PubMed ID: 6093866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reactivity of thiol groups and the subunit structure of aldolase.
    Anderson PJ; Perham RN
    Biochem J; 1970 Apr; 117(2):291-8. PubMed ID: 5420037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of cysteine-319 as the target amino acid of 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate in bovine liver glutamate dehydrogenase.
    Ozturk DH; Colman RF
    Biochemistry; 1991 Jul; 30(29):7126-34. PubMed ID: 1854724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site and significance of chemically modifiable cysteine residues in glutamate dehydrogenase of Clostridium symbiosum and the use of protection studies to measure coenzyme binding.
    Syed SE; Hornby DP; Brown PE; Fitton JE; Engel PC
    Biochem J; 1994 Feb; 298 ( Pt 1)(Pt 1):107-13. PubMed ID: 8129708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the condensing component of chicken liver fatty acid synthase by iodoacetamide and 5,5'-dithiobis-(2-nitrobenzoic acid).
    Varagiannis E; Kumar S
    Biochem J; 1983 Dec; 215(3):545-53. PubMed ID: 6661183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of glutamate dehydrogenase. Analysis of quaternary structure and contact areas between the polypeptide chains.
    Rasched IR; Bohn A; Sund H
    Eur J Biochem; 1977 Apr; 74(2):365-77. PubMed ID: 558096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli. Character of required thiol group and structure of thiol peptides.
    Kuehl GV; Lee ML; Muench KH
    J Biol Chem; 1976 Jun; 251(11):3254-60. PubMed ID: 776964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence of bovine liver glutamate dehydrogenase. I. Isolation of tryptic peptides from the carboxymethylated protein.
    Landon M; Melamed MD; Smith EL
    J Biol Chem; 1971 Apr; 246(8):2360-73. PubMed ID: 5102802
    [No Abstract]   [Full Text] [Related]  

  • 20. Specific modification of a single cysteine residue in both bovine liver glutamate dehydrogenase and yeast glyceraldehyde-3-phosphate dehydrogenase. Difference in the mode of modification by pyrene maleimide.
    Rasched I; Bayne S
    Biochim Biophys Acta; 1982 Oct; 707(2):267-72. PubMed ID: 6753939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.