BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15838146)

  • 21. The Burrows-Wheeler similarity distribution between biological sequences based on Burrows-Wheeler transform.
    Yang L; Zhang X; Wang T
    J Theor Biol; 2010 Feb; 262(4):742-9. PubMed ID: 19903487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DELIMINATE--a fast and efficient method for loss-less compression of genomic sequences: sequence analysis.
    Mohammed MH; Dutta A; Bose T; Chadaram S; Mande SS
    Bioinformatics; 2012 Oct; 28(19):2527-9. PubMed ID: 22833526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multithread Multistring Burrows-Wheeler Transform and Longest Common Prefix Array.
    Bonizzoni P; Della Vedova G; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2019 Sep; 26(9):948-961. PubMed ID: 31140836
    [No Abstract]   [Full Text] [Related]  

  • 24. Efficient maximal repeat finding using the burrows-wheeler transform and wavelet tree.
    Külekci MO; Vitter JS; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):421-9. PubMed ID: 21968959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological sequence compression algorithms.
    Matsumoto T; Sadakane K; Imai H
    Genome Inform Ser Workshop Genome Inform; 2000; 11():43-52. PubMed ID: 11700586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast SNP analysis using the Burrows-Wheeler transform of short-read data.
    Kimura K; Koike A
    Bioinformatics; 2015 May; 31(10):1577-83. PubMed ID: 25609790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform.
    Baier U; Beller T; Ohlebusch E
    Bioinformatics; 2016 Feb; 32(4):497-504. PubMed ID: 26504144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A space-efficient construction of the Burrows-Wheeler transform for genomic data.
    Lippert RA; Mobarry CM; Walenz BP
    J Comput Biol; 2005 Sep; 12(7):943-51. PubMed ID: 16201914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Big Data in biology].
    Viari A
    Med Sci (Paris); 2012 Dec; 28(12):1027-8. PubMed ID: 23290391
    [No Abstract]   [Full Text] [Related]  

  • 30. SeqCompress: an algorithm for biological sequence compression.
    Sardaraz M; Tahir M; Ikram AA; Bajwa H
    Genomics; 2014 Oct; 104(4):225-8. PubMed ID: 25173568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disk-based compression of data from genome sequencing.
    Grabowski S; Deorowicz S; Roguski Ł
    Bioinformatics; 2015 May; 31(9):1389-95. PubMed ID: 25536966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quaternionic periodicity transform: an algebraic solution to the tandem repeat detection problem.
    Brodzik AK
    Bioinformatics; 2007 Mar; 23(6):694-700. PubMed ID: 17237057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finding significant matches of position weight matrices in linear time.
    Pizzi C; Rastas P; Ukkonen E
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):69-79. PubMed ID: 21071798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BWtrs: A tool for searching for tandem repeats in DNA sequences based on the Burrows-Wheeler transform.
    Pokrzywa R; Polanski A
    Genomics; 2010 Nov; 96(5):316-21. PubMed ID: 20709168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphical representation for DNA sequences via joint diagonalization of matrix pencil.
    Yu HJ; Huang DS
    IEEE J Biomed Health Inform; 2013 May; 17(3):503-11. PubMed ID: 24592449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure.
    Liu Q; Yang Y; Chen C; Bu J; Zhang Y; Ye X
    BMC Bioinformatics; 2008 Mar; 9():176. PubMed ID: 18373878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PhyloPat: phylogenetic pattern analysis of eukaryotic genes.
    Hulsen T; de Vlieg J; Groenen PM
    BMC Bioinformatics; 2006 Sep; 7():398. PubMed ID: 16948844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using RepeatMasker to identify repetitive elements in genomic sequences.
    Chen N
    Curr Protoc Bioinformatics; 2004 May; Chapter 4():Unit 4.10. PubMed ID: 18428725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compressed indexing and local alignment of DNA.
    Lam TW; Sung WK; Tam SL; Wong CK; Yiu SM
    Bioinformatics; 2008 Mar; 24(6):791-7. PubMed ID: 18227115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Compression and Indexing for Highly Repetitive DNA Sequence Collections.
    Huo H; Chen X; Guo X; Vitter JS
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2394-2408. PubMed ID: 31985436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.