These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 158384)

  • 1. Localized energization of the mitochondrial inner membrane by ATP.
    Higuti T; Arakaki N; Hattori A
    Biochim Biophys Acta; 1979 Oct; 548(1):166-71. PubMed ID: 158384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution and reconstitution of ATP synthesis and ATP-dependent functions of liver mitochondria.
    Pedersen PL; Hullihen J
    Methods Enzymol; 1979; 55():736-41. PubMed ID: 156857
    [No Abstract]   [Full Text] [Related]  

  • 3. Sidedness of inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by ethidium bromide.
    Higuti T; Yokota M; Arakaki N; Hattori A; Tani I
    Biochim Biophys Acta; 1978 Aug; 503(2):211-22. PubMed ID: 28755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triphenyltetrazolium and its derivatives are anisotropic inhibitors of energy transduction in oxidative phosphorylation in rat liver mitochondria.
    Higuti T; Arakaki R; Kotera Y; Takigawa M; Tani I; Shibuya M
    Biochim Biophys Acta; 1983 Oct; 725(1):1-9. PubMed ID: 6626537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of palmitoyl-CoA binding with adenine nucleotide translocase on energization of mitochondria].
    Filippova SN; Bavilin VA; Panov AV
    Biull Eksp Biol Med; 1979 Sep; 88(9):297-9. PubMed ID: 42454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic inhibition of energy transduction in oxidative phosphorylation in rat liver mitochondria by tetraphenylarsonium.
    Higuti T; Arakaki N; Niimi S; Nakasima S; Saito R; Tani I; Ota F
    J Biol Chem; 1980 Aug; 255(16):7631-6. PubMed ID: 7400137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extent of mitochondrial F1-ATPase and adenine nucleotide carrier activity with epsilon-ATP.
    Kaplan RS; Coleman PS
    Biochim Biophys Acta; 1978 Feb; 501(2):269-74. PubMed ID: 145875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential.
    Smaili SS; Hsu YT; Sanders KM; Russell JT; Youle RJ
    Cell Death Differ; 2001 Sep; 8(9):909-20. PubMed ID: 11526446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-equilibrium thermodynamics of oxidative phosphorylation by inverted inner membrane vesicles of rat liver mitochondria.
    Lemasters JJ; Billica WH
    J Biol Chem; 1981 Dec; 256(24):12949-57. PubMed ID: 7309743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energization of mitochondrial inner membranes caused by L-malate.
    Higuti T; Sato M; Mizuno S; Yokota M; Sugiyama Y; Nishitani Y; Sekiya M; Tani I
    Biochim Biophys Acta; 1976 Oct; 449(1):10-22. PubMed ID: 987804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of equisetin on rat liver mitochondria: evidence for inhibition of substrate anion carriers of the inner membrane.
    König T; Kapus A; Sarkadi B
    J Bioenerg Biomembr; 1993 Oct; 25(5):537-45. PubMed ID: 8132493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethidium bromide inhibits mitochondrial phosphorylating oxidation.
    Higgins ES; Dunlavey BL; Friend WH; Rogers KS
    Proc Soc Exp Biol Med; 1975 Sep; 149(4):1055-8. PubMed ID: 126452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligomycin sensitivity conferring protein of mitochondrial ATP synthase: deletions in the N-terminal end cause defects in interactions with F1, while deletions in the C-terminal end cause defects in interactions with F0.
    Joshi S; Cao GJ; Nath C; Shah J
    Biochemistry; 1996 Sep; 35(37):12094-103. PubMed ID: 8810915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunit interaction in the mitochondrial H+-translocating ATPase. The role of oligomycin sensitivity conferral protein and coupling factor 6 in ATPase binding and Pi-ATP exchange in mitochondrial membranes.
    Liang AM; Fisher RJ
    J Biol Chem; 1983 Apr; 258(8):4784-7. PubMed ID: 6131898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of dependence of protein synthesis in mitochondria on the transmembrane potential.
    Rabinovitz YM; Pinus HA; Kotelnikova AV
    Mol Cell Biochem; 1977 Feb; 14(1-3):109-13. PubMed ID: 140302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties.
    Emaus RK; Grunwald R; Lemasters JJ
    Biochim Biophys Acta; 1986 Jul; 850(3):436-48. PubMed ID: 2873836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of primycin on the inner membrane permeability of rat liver mitochondria.
    Mészáros L; König T; Paróczai M; Náhm K; Horváth I
    J Antibiot (Tokyo); 1979 Feb; 32(2):161-6. PubMed ID: 155670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internalization of the spin-labelled surface potential probe CAT12 by energized mitochondria.
    Wojtczak L; Szewczyk A
    Biochem Biophys Res Commun; 1986 May; 136(3):941-6. PubMed ID: 3718504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional relationship between the ADP/ATP-carrier and the F1-ATPase in mitochondria.
    Vignais PV; Vignais PM; Doussiere J
    Biochim Biophys Acta; 1975 Feb; 376(2):219-30. PubMed ID: 123160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of the ATP/ADP translocator in the inner membrane and regulation of contact sites between mitochondrial envelope membranes by ADP. A study on freeze-fractured isolated liver mitochondria.
    Bücheler K; Adams V; Brdiczka D
    Biochim Biophys Acta; 1991 Feb; 1056(3):233-42. PubMed ID: 1825787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.