These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15838526)

  • 1. Validity of the detection of wheelchair propulsion as measured with an Activity Monitor in patients with spinal cord injury.
    Postma K; van den Berg-Emons HJ; Bussmann JB; Sluis TA; Bergen MP; Stam HJ
    Spinal Cord; 2005 Sep; 43(9):550-7. PubMed ID: 15838526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of wearing an activity monitor on the amount of daily manual wheelchair propulsion in persons with spinal cord injury.
    Bussmann JB; Kikkert MA; Sluis TA; Bergen MP; Stam HJ; van den Berg-Emons HJ
    Spinal Cord; 2010 Feb; 48(2):128-33. PubMed ID: 19546876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury.
    Hiremath SV; Ding D; Farringdon J; Vyas N; Cooper RA
    Spinal Cord; 2013 Sep; 51(9):705-9. PubMed ID: 23689386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of verbal training and visual feedback on manual wheelchair propulsion.
    DeGroot KK; Hollingsworth HH; Morgan KA; Morris CL; Gray DB
    Disabil Rehabil Assist Technol; 2009 Mar; 4(2):86-94. PubMed ID: 19253097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor.
    Hiremath SV; Ding D; Farringdon J; Cooper RA
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1937-43. PubMed ID: 22609119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheelchair axle position effect on start-up propulsion performance of persons with tetraplegia.
    Freixes O; Fernández SA; Gatti MA; Crespo MJ; Olmos LE; Rubel IF
    J Rehabil Res Dev; 2010; 47(7):661-8. PubMed ID: 21110262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living.
    Leving MT; Horemans HLD; Vegter RJK; de Groot S; Bussmann JBJ; van der Woude LHV
    PLoS One; 2018; 13(4):e0194864. PubMed ID: 29641582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of custom energy expenditure models for SenseWear armband in manual wheelchair users.
    Tsang K; Hiremath SV; Cooper RA; Ding D
    J Rehabil Res Dev; 2015; 52(7):793-803. PubMed ID: 26745837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users.
    Hiremath SV; Ding D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():835-8. PubMed ID: 19964247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote monitoring of sitting behavior of people with spinal cord injury.
    Bain DS; Ferguson-Pell M
    J Rehabil Res Dev; 2002; 39(4):513-20. PubMed ID: 17638148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics of wheelchair propulsion in adults and children with spinal cord injury.
    Bednarczyk JH; Sanderson DJ
    Arch Phys Med Rehabil; 1994 Dec; 75(12):1327-34. PubMed ID: 7993172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering better wheelchairs to enhance community participation.
    Cooper RA; Boninger ML; Spaeth DM; Ding D; Guo S; Koontz AM; Fitzgerald SG; Cooper R; Kelleher A; Collins DM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):438-55. PubMed ID: 17190036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The validity of compliance monitors to assess wearing time of thoracic-lumbar-sacral orthoses in children with spinal cord injury.
    Hunter LN; Sison-Williamson M; Mendoza MM; McDonald CM; Molitor F; Mulcahey MJ; Betz RR; Vogel LC; Bagley A
    Spine (Phila Pa 1976); 2008 Jun; 33(14):1554-61. PubMed ID: 18552670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlates of physical activity in adults with mobility limitations.
    Warms CA; Belza BL; Whitney JD
    Fam Community Health; 2007; 30(2 Suppl):S5-16. PubMed ID: 17413817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.
    Godfrey A; Culhane KM; Lyons GM
    Med Eng Phys; 2007 Oct; 29(8):930-4. PubMed ID: 17134934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.