These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 15838626)
1. The role of fibroblast growth factor 23 for hypophosphatemia and abnormal regulation of vitamin D metabolism in patients with McCune-Albright syndrome. Yamamoto T; Imanishi Y; Kinoshita E; Nakagomi Y; Shimizu N; Miyauchi A; Satomura K; Koshiyama H; Inaba M; Nishizawa Y; Jüppner H; Ozono K J Bone Miner Metab; 2005; 23(3):231-7. PubMed ID: 15838626 [TBL] [Abstract][Full Text] [Related]
2. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. Jonsson KB; Zahradnik R; Larsson T; White KE; Sugimoto T; Imanishi Y; Yamamoto T; Hampson G; Koshiyama H; Ljunggren O; Oba K; Yang IM; Miyauchi A; Econs MJ; Lavigne J; Jüppner H N Engl J Med; 2003 Apr; 348(17):1656-63. PubMed ID: 12711740 [TBL] [Abstract][Full Text] [Related]
3. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. Shimada T; Hasegawa H; Yamazaki Y; Muto T; Hino R; Takeuchi Y; Fujita T; Nakahara K; Fukumoto S; Yamashita T J Bone Miner Res; 2004 Mar; 19(3):429-35. PubMed ID: 15040831 [TBL] [Abstract][Full Text] [Related]
5. Fibroblast growth factor-23 is regulated by 1alpha,25-dihydroxyvitamin D. Collins MT; Lindsay JR; Jain A; Kelly MH; Cutler CM; Weinstein LS; Liu J; Fedarko NS; Winer KK J Bone Miner Res; 2005 Nov; 20(11):1944-50. PubMed ID: 16234967 [TBL] [Abstract][Full Text] [Related]
6. Levels and dynamic changes of serum fibroblast growth factor 23 in hypophosphatemic rickets/osteomalacia. Xia WB; Jiang Y; Li M; Xing XP; Wang O; Hu YY; Zhang HB; Liu HC; Meng XW; Zhou XY Chin Med J (Engl); 2010 May; 123(9):1158-62. PubMed ID: 20529556 [TBL] [Abstract][Full Text] [Related]
7. Fibroblast growth factor 23 and its receptors. Yu X; White KE Ther Apher Dial; 2005 Aug; 9(4):308-12. PubMed ID: 16076372 [TBL] [Abstract][Full Text] [Related]
8. Resolution of severe, adolescent-onset hypophosphatemic rickets following resection of an FGF-23-producing tumour of the distal ulna. Ward LM; Rauch F; White KE; Filler G; Matzinger MA; Letts M; Travers R; Econs MJ; Glorieux FH Bone; 2004 May; 34(5):905-11. PubMed ID: 15121023 [TBL] [Abstract][Full Text] [Related]
9. Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Kobayashi K; Imanishi Y; Koshiyama H; Miyauchi A; Wakasa K; Kawata T; Goto H; Ohashi H; Koyano HM; Mochizuki R; Miki T; Inaba M; Nishizawa Y Life Sci; 2006 Apr; 78(20):2295-301. PubMed ID: 16337659 [TBL] [Abstract][Full Text] [Related]
10. Novel regulators of phosphate homeostasis and bone metabolism. Jüppner H Ther Apher Dial; 2007 Oct; 11 Suppl 1():S3-22. PubMed ID: 17976082 [TBL] [Abstract][Full Text] [Related]
11. The journey from vitamin D-resistant rickets to the regulation of renal phosphate transport. Levine BS; Kleeman CR; Felsenfeld AJ Clin J Am Soc Nephrol; 2009 Nov; 4(11):1866-77. PubMed ID: 19808223 [TBL] [Abstract][Full Text] [Related]
12. Regulatory mechanisms of circulating fibroblast growth factor 23 in parathyroid diseases. Imanishi Y; Kobayashi K; Kawata T; Inaba M; Nishizawa Y Ther Apher Dial; 2007 Oct; 11 Suppl 1():S32-7. PubMed ID: 17976083 [TBL] [Abstract][Full Text] [Related]
13. Oral phosphate supplementation corrects hypophosphatemia and normalizes plasma FGF23 and 25-hydroxyvitamin D3 levels in women with chronic metabolic acidosis. Domrongkitchaiporn S; Disthabanchong S; Cheawchanthanakij R; Niticharoenpong K; Stitchantrakul W; Charoenphandhu N; Krishnamra N Exp Clin Endocrinol Diabetes; 2010 Feb; 118(2):105-12. PubMed ID: 19449283 [TBL] [Abstract][Full Text] [Related]
14. Clinical approach to clarifying the mechanism of abnormal bone metabolism in McCune-Albright syndrome. Yamamoto T J Bone Miner Metab; 2006; 24(1):7-10. PubMed ID: 16369891 [TBL] [Abstract][Full Text] [Related]
15. Hypophosphatemic rickets accompanying McCune-Albright syndrome: evidence that a humoral factor causes hypophosphatemia. Yamamoto T; Miyamoto KI; Ozono K; Taketani Y; Katai K; Miyauchi A; Shima M; Yoshikawa H; Yoh K; Takeda E; Okada S J Bone Miner Metab; 2001; 19(5):287-95. PubMed ID: 11498730 [TBL] [Abstract][Full Text] [Related]
16. Serum FGF23 levels in normal and disordered phosphorus homeostasis. Weber TJ; Liu S; Indridason OS; Quarles LD J Bone Miner Res; 2003 Jul; 18(7):1227-34. PubMed ID: 12854832 [TBL] [Abstract][Full Text] [Related]
17. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis. Brandi L Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159 [TBL] [Abstract][Full Text] [Related]
18. Vitamin D metabolism in the kidney: regulation by phosphorus and fibroblast growth factor 23. Perwad F; Portale AA Mol Cell Endocrinol; 2011 Dec; 347(1-2):17-24. PubMed ID: 21914460 [TBL] [Abstract][Full Text] [Related]
19. The phosphatonins and the regulation of phosphate transport and vitamin D metabolism. Sommer S; Berndt T; Craig T; Kumar R J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):497-503. PubMed ID: 17224271 [TBL] [Abstract][Full Text] [Related]
20. Correlation among hyperphosphatemia, type II sodium phosphate transporter activity, and vitamin D metabolism in Fgf-23 null mice. Sitara D Ann N Y Acad Sci; 2007 Nov; 1116():485-93. PubMed ID: 17646263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]