These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15838950)

  • 1. Aggregation and breakup of colloidal particle aggregates in shear flow, studied with video microscopy.
    Tolpekin VA; Duits MH; van den Ende D; Mellema J
    Langmuir; 2004 Mar; 20(7):2614-27. PubMed ID: 15838950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates.
    Harshe YM; Lattuada M; Soos M
    Langmuir; 2011 May; 27(10):5739-52. PubMed ID: 21506535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floc cohesive force in reversible aggregation: a Couette laminar flow investigation.
    Frappier G; Lartiges BS; Skali-Lami S
    Langmuir; 2010 Jul; 26(13):10475-88. PubMed ID: 20515055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation behavior of latex particles in shear flow confined between two parallel plates.
    Kikuchi Y; Yamada H; Kunimori H; Tsukada T; Hozawa M; Yokoyama C; Kubo M
    Langmuir; 2005 Apr; 21(8):3273-8. PubMed ID: 15807564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal Morphology and Breakage of DLCA and RLCA Aggregates.
    Tang S; Preece JM; McFarlane CM; Zhang Z
    J Colloid Interface Sci; 2000 Jan; 221(1):114-123. PubMed ID: 10623457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-Induced Breakup of Cellulose Nanocrystal Aggregates.
    Xu HN; Tang YY; Ouyang XK
    Langmuir; 2017 Jan; 33(1):235-242. PubMed ID: 27936767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of different shear devices on flocculation.
    Serra T; Colomer J; Logan BE
    Water Res; 2008 Feb; 42(4-5):1113-21. PubMed ID: 17889250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms behind overshoots in mean cluster size profiles in aggregation-breakup processes.
    Sadegh-Vaziri R; Ludwig K; Sundmacher K; Babler MU
    J Colloid Interface Sci; 2018 Oct; 528():336-348. PubMed ID: 29885609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental analysis of coagulation of particles under low-shear flow.
    Colomer J; Peters F; Marrasé C
    Water Res; 2005 Aug; 39(13):2994-3000. PubMed ID: 15996708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the Aggregates During the Process of Aggregation and Breakup Under a Shear Flow.
    Serra T; Casamitjana X
    J Colloid Interface Sci; 1998 Oct; 206(2):505-511. PubMed ID: 9756662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites.
    Genovese DB
    Adv Colloid Interface Sci; 2012; 171-172():1-16. PubMed ID: 22304831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow electrification in nonaqueous colloidal suspensions, studied with video microscopy.
    Tolpekin VA; van den Ende D; Duits MH; Mellema J
    Langmuir; 2004 Sep; 20(20):8460-7. PubMed ID: 15379461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation and Breakup of Particles in a Shear Flow.
    Serra T; Colomer J; Casamitjana X
    J Colloid Interface Sci; 1997 Mar; 187(2):466-73. PubMed ID: 9073422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic stress on small colloidal aggregates in shear flow using Stokesian dynamics.
    Seto R; Botet R; Briesen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041405. PubMed ID: 22181144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragmentation and erosion of two-dimensional aggregates in shear flow.
    Vassileva ND; van den Ende D; Mugele F; Mellema J
    Langmuir; 2007 Feb; 23(5):2352-61. PubMed ID: 17309199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank.
    Soos M; Moussa AS; Ehrl L; Sefcik J; Wu H; Morbidelli M
    J Colloid Interface Sci; 2008 Mar; 319(2):577-89. PubMed ID: 18164309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging.
    Kamibayashi M; Ogura H; Otsubo Y
    J Colloid Interface Sci; 2008 May; 321(2):294-301. PubMed ID: 18342327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Thermodynamically Consistent, Microscopically-Based, Model of the Rheology of Aggregating Particles Suspensions.
    Jariwala S; Wagner NJ; Beris AN
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of colloidal aggregation by critical Casimir forces.
    Bonn D; Otwinowski J; Sacanna S; Guo H; Wegdam G; Schall P
    Phys Rev Lett; 2009 Oct; 103(15):156101. PubMed ID: 19905653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.