These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15839243)

  • 21. An experimental study of the ventral striatum of the golden hamster. II. Neuronal connections of the olfactory tubercle.
    Newman R; Winans SS
    J Comp Neurol; 1980 May; 191(2):193-212. PubMed ID: 7410591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens.
    Newman R; Winans SS
    J Comp Neurol; 1980 May; 191(2):167-92. PubMed ID: 7410590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat.
    Rye DB; Lee HJ; Saper CB; Wainer BH
    J Comp Neurol; 1988 Mar; 269(3):315-41. PubMed ID: 2453532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the structural bases of information processing in the basal ganglia: the spatial organization of thalamocortical projections in the dog brain.
    Gorbachevskaya AI; Chivileva OG
    Neurosci Behav Physiol; 2003 Feb; 33(2):157-61. PubMed ID: 12669787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The striopallidal projections of the zona incerta in the dog diencephalon].
    Gorbachevskaia AI
    Morfologiia; 2010; 137(2):9-12. PubMed ID: 20572386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Analysis of the morphological substrate of information processing in the striatum based on organizational characteristics of its afferent projections].
    Gorbachevskaia AI
    Ross Fiziol Zh Im I M Sechenova; 2002 Oct; 88(10):1280-6. PubMed ID: 12503370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Structural basis of the striopallidum and the pedunculo-pontine tegmental nucleus participation in organization of adaptive behaviour].
    Gorbachevskaia AI; Chivileva OG
    Ross Fiziol Zh Im I M Sechenova; 2006 Jul; 92(7):777-87. PubMed ID: 17300034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compartmental organization of the thalamostriatal connection in the cat.
    Ragsdale CW; Graybiel AM
    J Comp Neurol; 1991 Sep; 311(1):134-67. PubMed ID: 1719043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [THE ORGANIZATION OF PROJECTIONS OF MIDBRAIN LATERAL TEGMENTAL NUCLEI THE TO BRAIN BASAL GANGLIA IN DOGS].
    Gorbachevskaya AI
    Morfologiia; 2015; 148(6):28-33. PubMed ID: 27141581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The projections of the amygdaloid body, ventral tegmental area and substantia nigra to different segments of the nucleus accumbens in the canine brain].
    Gorbachevskaia AI
    Morfologiia; 1997; 112(5):30-3. PubMed ID: 9460675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thalamostriatal projections from the ventral anterior nucleus in the dog.
    Tanaka D; Isaacson LG; Trosko BK
    J Comp Neurol; 1986 May; 247(1):56-68. PubMed ID: 2423563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The spatial organization of the cortical and subcortical afferent projections of the neostriatum in the dog].
    Chivileva OG; Gorbachevskaia AI
    Morfologiia; 1997; 112(4):36-42. PubMed ID: 9424230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey.
    Saint-Cyr JA; Ungerleider LG; Desimone R
    J Comp Neurol; 1990 Aug; 298(2):129-56. PubMed ID: 1698830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nigrothalamic projections in the monkey demonstrated by autoradiographic technics.
    Carpenter MB; Nakano K; Kim R
    J Comp Neurol; 1976 Feb; 165(4):401-15. PubMed ID: 57125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Projections of medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase.
    Giolli RA; Blanks RH; Torigoe Y; Williams DD
    J Comp Neurol; 1985 Feb; 232(1):99-116. PubMed ID: 3973086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amygdaloid projections to the frontal cortex and the striatum in the rat.
    Kita H; Kitai ST
    J Comp Neurol; 1990 Aug; 298(1):40-9. PubMed ID: 1698828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of thalamic projections in the nucleus accumbens and the caudate nucleus in cats and its relation with hippocampal and other subcortical afferents.
    Jayaraman A
    J Comp Neurol; 1985 Jan; 231(3):396-420. PubMed ID: 3968245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the morphological substrate for information processing in the striatum based on the organizational characteristics of its afferent projections.
    Gorbachevskaya AI
    Neurosci Behav Physiol; 2004 Mar; 34(3):265-9. PubMed ID: 15151180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Widespread corticostriate projections from temporal cortex of the rhesus monkey.
    Van Hoesen GW; Yeterian EH; Lavizzo-Mourey R
    J Comp Neurol; 1981 Jun; 199(2):205-19. PubMed ID: 7251940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections.
    Sadikot AF; Parent A; François C
    J Comp Neurol; 1992 Jan; 315(2):137-59. PubMed ID: 1372010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.