These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 15839340)

  • 21. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Technical Note: Implications of using EGSnrc instead of EGS4 for extracting electron stopping powers from measured energy spectra.
    Tessier F; Ross CK
    Med Phys; 2021 Apr; 48(4):1996-2003. PubMed ID: 33125734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photon beam convolution using polyenergetic energy deposition kernels.
    Hoban PW; Murray DC; Round WH
    Phys Med Biol; 1994 Apr; 39(4):669-85. PubMed ID: 15552077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. VMC++ validation for photon beams in the energy range of 20-1000 keV.
    Terribilini D; Fix MK; Frei D; Volken W; Manser P
    Med Phys; 2010 Oct; 37(10):5218-27. PubMed ID: 21089755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4.
    Ye SJ; Brezovich IA; Pareek P; Naqvi SA
    Phys Med Biol; 2004 Feb; 49(3):387-97. PubMed ID: 15012008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.
    Chofor N; Harder D; Willborn K; Rühmann A; Poppe B
    Z Med Phys; 2011 Sep; 21(3):183-97. PubMed ID: 21530198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo simulation of backscatter from lead for clinical electron beams using EGSnrc.
    Chow JC; Grigorov GN
    Med Phys; 2008 Apr; 35(4):1241-50. PubMed ID: 18491516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining the effects of microsphere and surrounding material composition on (90)Y dose kernels using egsnrc and mcnp5.
    Paxton AB; Davis SD; Dewerd LA
    Med Phys; 2012 Mar; 39(3):1424-34. PubMed ID: 22380375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves.
    Faddegon BA; Villarreal-Barajas JE
    Med Phys; 2005 Nov; 32(11):3286-94. PubMed ID: 16370417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L; Desbrée A; Schlattl H; Franck D; Blanchardon E; Zankl M
    Phys Med Biol; 2010 Jul; 55(13):3631-41. PubMed ID: 20526035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interface perturbation effects in high-energy electron beams.
    Verhaegen F
    Phys Med Biol; 2003 Mar; 48(6):687-705. PubMed ID: 12699189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations.
    Sempau J; Wilderman SJ; Bielajew AF
    Phys Med Biol; 2000 Aug; 45(8):2263-91. PubMed ID: 10958194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Track-average LET of secondary electrons generated in LiF:Mg,Ti and liquid water by 20-300 kV x-ray,
    Cabrera-Santiago A; Massillon-Jl G
    Phys Med Biol; 2016 Nov; 61(22):7919-7933. PubMed ID: 27779122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SU-E-T-510: Calculation of High Resolution and Material-Specific Photon Energy Deposition Kernels.
    Huang J; Childress N; Kry S
    Med Phys; 2012 Jun; 39(6Part18):3822-3823. PubMed ID: 28518494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of various energy deposition kernel refinements for the convolution∕superposition method.
    Huang JY; Eklund D; Childress NL; Howell RM; Mirkovic D; Followill DS; Kry SF
    Med Phys; 2013 Dec; 40(12):121721. PubMed ID: 24320507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.