These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15839556)

  • 1. Maximum capacities for adsorption of phenanthrene in the slowly and very slowly desorbing domains in nineteen soils and sediments.
    van den Heuvel H; Le Couriaut T; McMullen BM; Lozac'H F; van Noort P
    Environ Toxicol Chem; 2005 Apr; 24(4):830-5. PubMed ID: 15839556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of indigenous compounds to determine maximum capacities for adsorption of phenanthrene by sediments.
    van den Heuvel H; van Noort PC
    Chemosphere; 2004 Feb; 54(6):763-9. PubMed ID: 14602109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorbate size-dependent maximum capacities for adsorption of organic compounds in the slowly and very slowly desorbing domains of a sediment.
    van den Heuvel H; van Noort P
    Environ Toxicol Chem; 2005 Aug; 24(8):1918-23. PubMed ID: 16152962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition for adsorption between added phenanthrene and in situ PAHs in two sediments.
    van den Heuvel H; van Noort PC
    Chemosphere; 2003 Dec; 53(9):1097-103. PubMed ID: 14512113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of total native compounds on phenanthrene-specific adsorption sites in the very slow desorption domain of 16 sediments and soils.
    van den Heuvel H; van Noort PC
    Chemosphere; 2006 Oct; 65(2):245-9. PubMed ID: 16603225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments.
    Gao H; Ma J; Xu L; Jia L
    Environ Sci Pollut Res Int; 2014; 21(14):8620-30. PubMed ID: 24705921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow and very slow desorption of organic compounds from sediment: influence of sorbate planarity.
    van Noort PC; Cornelissen G; ten Hulscher TE; Vrind BA; Rigterink H; Belfroid A
    Water Res; 2003 May; 37(10):2317-22. PubMed ID: 12727240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of phenanthrene and its primary metabolite (1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions.
    Parikh SJ; Chorover J; Burgos WD
    J Contam Hydrol; 2004 Aug; 72(1-4):1-22. PubMed ID: 15240164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating phenanthrene sorption on various wood chars.
    James G; Sabatini DA; Chiou CT; Rutherford D; Scott AC; Karapanagioti HK
    Water Res; 2005 Feb; 39(4):549-58. PubMed ID: 15707627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG
    Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation.
    Cornelissen G; Gustafsson O; Bucheli TD; Jonker MT; Koelmans AA; van Noort PC
    Environ Sci Technol; 2005 Sep; 39(18):6881-95. PubMed ID: 16201609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.
    Marchal G; Smith KE; Rein A; Winding A; Wollensen de Jonge L; Trapp S; Karlson UG
    Environ Pollut; 2013 Oct; 181():200-10. PubMed ID: 23871817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates.
    Johnson MD; Keinath TM; Weber WJ
    Environ Sci Technol; 2001 Apr; 35(8):1688-95. PubMed ID: 11329721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How quality and quantity of organic matter affect polycyclic aromatic hydrocarbon desorption from Norwegian harbor sediments.
    Oen AM; Breedveld GD; Kalaitzidis S; Christanis K; Cornelissen G
    Environ Toxicol Chem; 2006 May; 25(5):1258-67. PubMed ID: 16704056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dissolved organic carbon on desorption of aged phenanthrene from contaminated soils: A mechanistic study.
    Luo L; Chen Z; Cheng Y; Lv J; Cao D; Wen B
    Environ Pollut; 2019 Nov; 254(Pt A):113016. PubMed ID: 31400666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Sorption and desorption of phenanthrene on sediments].
    Wu WL; Sun HW
    Huan Jing Ke Xue; 2009 Apr; 30(4):1133-8. PubMed ID: 19545019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Black carbon and kerogen in soils and sediments. 2. Their roles in equilibrium sorption of less-polar organic pollutants.
    Xiao B; Yu Z; Huang W; Song J; Peng P
    Environ Sci Technol; 2004 Nov; 38(22):5842-52. PubMed ID: 15573581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Tenax addition amount and desorption time on desorption behaviour for bioavailability prediction of polycyclic aromatic hydrocarbons.
    Wang B; Jin Z; Xu X; Zhou H; Yao X; Ji F
    Sci Total Environ; 2019 Feb; 651(Pt 1):427-434. PubMed ID: 30243162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the sorption behaviors of phenanthrene on marine sediments.
    Yang GP; Zheng X
    Environ Toxicol Chem; 2010 Oct; 29(10):2169-76. PubMed ID: 20872678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction.
    Golding CJ; Gobas FA; Birch GE
    Environ Toxicol Chem; 2007 May; 26(5):829-36. PubMed ID: 17521126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.