These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 15839683)
1. CO rebinding to protoheme: investigations of the proximal and distal contributions to the geminate rebinding barrier. Ye X; Yu A; Georgiev GY; Gruia F; Ionascu D; Cao W; Sage JT; Champion PM J Am Chem Soc; 2005 Apr; 127(16):5854-61. PubMed ID: 15839683 [TBL] [Abstract][Full Text] [Related]
2. Temperature-dependent heme kinetics with nonexponential binding and barrier relaxation in the absence of protein conformational substates. Ye X; Ionascu D; Gruia F; Yu A; Benabbas A; Champion PM Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14682-7. PubMed ID: 17804802 [TBL] [Abstract][Full Text] [Related]
3. Temperature-dependent studies of NO recombination to heme and heme proteins. Ionascu D; Gruia F; Ye X; Yu A; Rosca F; Beck C; Demidov A; Olson JS; Champion PM J Am Chem Soc; 2005 Dec; 127(48):16921-34. PubMed ID: 16316238 [TBL] [Abstract][Full Text] [Related]
4. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements. Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570 [TBL] [Abstract][Full Text] [Related]
5. Proximal and distal influences on ligand binding kinetics in microperoxidase and heme model compounds. Cao W; Ye X; Georgiev GY; Berezhna S; Sjodin T; Demidov AA; Wang W; Sage JT; Champion PM Biochemistry; 2004 Jun; 43(22):7017-27. PubMed ID: 15170339 [TBL] [Abstract][Full Text] [Related]
6. Geminate carbon monoxide rebinding to a c-type haem. Silkstone G; Jasaitis A; Vos MH; Wilson MT Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930 [TBL] [Abstract][Full Text] [Related]
7. Viscosity-dependent dynamics of CO rebinding to microperoxidase-8 in glycerol/water solution. Park J; Lee T; Lim M J Phys Chem B; 2010 Aug; 114(33):10897-904. PubMed ID: 20684499 [TBL] [Abstract][Full Text] [Related]
8. Ligand binding to heme proteins: connection between dynamics and function. Steinbach PJ; Ansari A; Berendzen J; Braunstein D; Chu K; Cowen BR; Ehrenstein D; Frauenfelder H; Johnson JB; Lamb DC Biochemistry; 1991 Apr; 30(16):3988-4001. PubMed ID: 2018767 [TBL] [Abstract][Full Text] [Related]
9. The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities. Dantsker D; Roche C; Samuni U; Blouin G; Olson JS; Friedman JM J Biol Chem; 2005 Nov; 280(46):38740-55. PubMed ID: 16155005 [TBL] [Abstract][Full Text] [Related]
10. An engineered heme-copper center in myoglobin: CO migration and binding. Nienhaus K; Olson JS; Nienhaus GU Biochim Biophys Acta; 2013 Sep; 1834(9):1824-31. PubMed ID: 23459127 [TBL] [Abstract][Full Text] [Related]
11. Myoglobin mutants giving the largest geminate yield in CO rebinding in the nanosecond time domain. Sugimoto T; Unno M; Shiro Y; Dou Y; Ikeda-Saito M Biophys J; 1998 Nov; 75(5):2188-94. PubMed ID: 9788913 [TBL] [Abstract][Full Text] [Related]
13. Geminate rebinding in R-state hemoglobin: kinetic and computational evidence for multiple hydrophobic pockets. Sottini S; Abbruzzetti S; Spyrakis F; Bettati S; Ronda L; Mozzarelli A; Viappiani C J Am Chem Soc; 2005 Dec; 127(49):17427-32. PubMed ID: 16332093 [TBL] [Abstract][Full Text] [Related]
14. Ultrafast CO Kinetics in Heme Proteins: Adiabatic Ligand Binding and Heavy Atom Tunneling. Benabbas A; Sun Y; Poulos TL; Champion PM J Am Chem Soc; 2017 Nov; 139(44):15738-15747. PubMed ID: 28984134 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the kinetic barriers for ligand binding to sperm whale myoglobin using site-directed mutagenesis and laser photolysis techniques. Carver TE; Rohlfs RJ; Olson JS; Gibson QH; Blackmore RS; Springer BA; Sligar SG J Biol Chem; 1990 Nov; 265(32):20007-20. PubMed ID: 2246277 [TBL] [Abstract][Full Text] [Related]
16. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Miller LM; Pedraza AJ; Chance MR Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857 [TBL] [Abstract][Full Text] [Related]
17. Ligand binding to synthetic mutant myoglobin (His-E7----Gly): role of the distal histidine. Braunstein D; Ansari A; Berendzen J; Cowen BR; Egeberg KD; Frauenfelder H; Hong MK; Ormos P; Sauke TB; Scholl R Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8497-501. PubMed ID: 3186740 [TBL] [Abstract][Full Text] [Related]
18. Unusually strong H-bonding to the heme ligand and fast geminate recombination dynamics of the carbon monoxide complex of Bacillus subtilis truncated hemoglobin. Feis A; Lapini A; Catacchio B; Brogioni S; Foggi P; Chiancone E; Boffi A; Smulevich G Biochemistry; 2008 Jan; 47(3):902-10. PubMed ID: 18154317 [TBL] [Abstract][Full Text] [Related]
19. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands. Decatur SM; DePillis GD; Boxer SG Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423 [TBL] [Abstract][Full Text] [Related]
20. Conformational relaxation and ligand binding in myoglobin. Ansari A; Jones CM; Henry ER; Hofrichter J; Eaton WA Biochemistry; 1994 May; 33(17):5128-45. PubMed ID: 8172888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]