BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15839683)

  • 1. CO rebinding to protoheme: investigations of the proximal and distal contributions to the geminate rebinding barrier.
    Ye X; Yu A; Georgiev GY; Gruia F; Ionascu D; Cao W; Sage JT; Champion PM
    J Am Chem Soc; 2005 Apr; 127(16):5854-61. PubMed ID: 15839683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent heme kinetics with nonexponential binding and barrier relaxation in the absence of protein conformational substates.
    Ye X; Ionascu D; Gruia F; Yu A; Benabbas A; Champion PM
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14682-7. PubMed ID: 17804802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent studies of NO recombination to heme and heme proteins.
    Ionascu D; Gruia F; Ye X; Yu A; Rosca F; Beck C; Demidov A; Olson JS; Champion PM
    J Am Chem Soc; 2005 Dec; 127(48):16921-34. PubMed ID: 16316238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of photolysis and rebinding kinetics in myoglobin using proximal ligand replacements.
    Cao W; Ye X; Sjodin T; Christian JF; Demidov AA; Berezhna S; Wang W; Barrick D; Sage JT; Champion PM
    Biochemistry; 2004 Aug; 43(34):11109-17. PubMed ID: 15323570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximal and distal influences on ligand binding kinetics in microperoxidase and heme model compounds.
    Cao W; Ye X; Georgiev GY; Berezhna S; Sjodin T; Demidov AA; Wang W; Sage JT; Champion PM
    Biochemistry; 2004 Jun; 43(22):7017-27. PubMed ID: 15170339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscosity-dependent dynamics of CO rebinding to microperoxidase-8 in glycerol/water solution.
    Park J; Lee T; Lim M
    J Phys Chem B; 2010 Aug; 114(33):10897-904. PubMed ID: 20684499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand binding to heme proteins: connection between dynamics and function.
    Steinbach PJ; Ansari A; Berendzen J; Braunstein D; Chu K; Cowen BR; Ehrenstein D; Frauenfelder H; Johnson JB; Lamb DC
    Biochemistry; 1991 Apr; 30(16):3988-4001. PubMed ID: 2018767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities.
    Dantsker D; Roche C; Samuni U; Blouin G; Olson JS; Friedman JM
    J Biol Chem; 2005 Nov; 280(46):38740-55. PubMed ID: 16155005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An engineered heme-copper center in myoglobin: CO migration and binding.
    Nienhaus K; Olson JS; Nienhaus GU
    Biochim Biophys Acta; 2013 Sep; 1834(9):1824-31. PubMed ID: 23459127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoglobin mutants giving the largest geminate yield in CO rebinding in the nanosecond time domain.
    Sugimoto T; Unno M; Shiro Y; Dou Y; Ikeda-Saito M
    Biophys J; 1998 Nov; 75(5):2188-94. PubMed ID: 9788913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing heme protein conformational equilibration rates with kinetic selection.
    Tian WD; Sage JT; Champion PM; Chien E; Sligar SG
    Biochemistry; 1996 Mar; 35(11):3487-502. PubMed ID: 8639499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geminate rebinding in R-state hemoglobin: kinetic and computational evidence for multiple hydrophobic pockets.
    Sottini S; Abbruzzetti S; Spyrakis F; Bettati S; Ronda L; Mozzarelli A; Viappiani C
    J Am Chem Soc; 2005 Dec; 127(49):17427-32. PubMed ID: 16332093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast CO Kinetics in Heme Proteins: Adiabatic Ligand Binding and Heavy Atom Tunneling.
    Benabbas A; Sun Y; Poulos TL; Champion PM
    J Am Chem Soc; 2017 Nov; 139(44):15738-15747. PubMed ID: 28984134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the kinetic barriers for ligand binding to sperm whale myoglobin using site-directed mutagenesis and laser photolysis techniques.
    Carver TE; Rohlfs RJ; Olson JS; Gibson QH; Blackmore RS; Springer BA; Sligar SG
    J Biol Chem; 1990 Nov; 265(32):20007-20. PubMed ID: 2246277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand binding to synthetic mutant myoglobin (His-E7----Gly): role of the distal histidine.
    Braunstein D; Ansari A; Berendzen J; Cowen BR; Egeberg KD; Frauenfelder H; Hong MK; Ormos P; Sauke TB; Scholl R
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8497-501. PubMed ID: 3186740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusually strong H-bonding to the heme ligand and fast geminate recombination dynamics of the carbon monoxide complex of Bacillus subtilis truncated hemoglobin.
    Feis A; Lapini A; Catacchio B; Brogioni S; Foggi P; Chiancone E; Boffi A; Smulevich G
    Biochemistry; 2008 Jan; 47(3):902-10. PubMed ID: 18154317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands.
    Decatur SM; DePillis GD; Boxer SG
    Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational relaxation and ligand binding in myoglobin.
    Ansari A; Jones CM; Henry ER; Hofrichter J; Eaton WA
    Biochemistry; 1994 May; 33(17):5128-45. PubMed ID: 8172888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.