BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 15839707)

  • 21. Mapping NMR chemical shift anisotropy parameters of backbone nuclei onto secondary structure elements in proteins.
    Elavarasi SB; Dorai K
    J Biomol Struct Dyn; 2010 Feb; 27(4):561-72. PubMed ID: 19916576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlated motions of successive amide N-H bonds in proteins.
    Pelupessy P; Ravindranathan S; Bodenhausen G
    J Biomol NMR; 2003 Apr; 25(4):265-80. PubMed ID: 12766390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropy of rotational diffusion, dipole-dipole cross-correlated NMR relaxation and angles between bond vectors in proteins.
    Deschamps M; Bodenhausen G
    Chemphyschem; 2001 Sep; 2(8-9):539-43. PubMed ID: 23686993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of 15N chemical shift anisotropy in a protein dissolved in a dilute liquid crystalline medium with the application of magic angle sample spinning.
    Kurita J; Shimahara H; Utsunomiya-Tate N; Tate S
    J Magn Reson; 2003 Jul; 163(1):163-73. PubMed ID: 12852920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy.
    Ulmer TS; Ramirez BE; Delaglio F; Bax A
    J Am Chem Soc; 2003 Jul; 125(30):9179-91. PubMed ID: 15369375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes.
    Tate S; Shimahara H; Utsunomiya-Tate N
    J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary structures of peptides and proteins via NMR chemical-shielding anisotropy (CSA) parameters.
    Czinki E; Császár AG; Magyarfalvi G; Schreiner PR; Allen WD
    J Am Chem Soc; 2007 Feb; 129(6):1568-77. PubMed ID: 17284001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of long-range cross-correlation rates using a combination of single- and multiple-quantum NMR spectroscopy in one experiment.
    Fruh D; Chiarparin E; Pelupessy P; Bodenhausen G
    J Am Chem Soc; 2002 Apr; 124(15):4050-7. PubMed ID: 11942843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.
    Clore GM; Schwieters CD
    Biochemistry; 2004 Aug; 43(33):10678-91. PubMed ID: 15311929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TROSY-based correlation and NOE spectroscopy for NMR structural studies of large proteins.
    Zhu G; Xia Y; Lin D; Gao X
    Methods Mol Biol; 2004; 278():57-78. PubMed ID: 15317991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C,15N-labeled peptides and proteins.
    Janik R; Ritz E; Gravelle A; Shi L; Peng X; Ladizhansky V
    J Magn Reson; 2010 Mar; 203(1):177-84. PubMed ID: 20060344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An exchange-free measure of 15N transverse relaxation: an NMR spectroscopy application to the study of a folding intermediate with pervasive chemical exchange.
    Hansen DF; Yang D; Feng H; Zhou Z; Wiesner S; Bai Y; Kay LE
    J Am Chem Soc; 2007 Sep; 129(37):11468-79. PubMed ID: 17722922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids: a DFT study and NMR implications.
    Precechtelová J; Padrta P; Munzarová ML; Sklenár V
    J Phys Chem B; 2008 Mar; 112(11):3470-8. PubMed ID: 18298109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein dynamics by ¹⁵N nuclear magnetic relaxation.
    Ferrage F
    Methods Mol Biol; 2012; 831():141-63. PubMed ID: 22167673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-specific backbone amide (15)N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements.
    Yao L; Grishaev A; Cornilescu G; Bax A
    J Am Chem Soc; 2010 Mar; 132(12):4295-309. PubMed ID: 20199098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation.
    Chang SL; Tjandra N
    J Magn Reson; 2005 May; 174(1):43-53. PubMed ID: 15809171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of 1H-14N cross-relaxation in immobilized proteins.
    Sunde EP; Halle B
    J Magn Reson; 2010 Apr; 203(2):257-73. PubMed ID: 20163976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective rotational correlation times of proteins from NMR relaxation interference.
    Lee D; Hilty C; Wider G; Wüthrich K
    J Magn Reson; 2006 Jan; 178(1):72-6. PubMed ID: 16188473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exclusively heteronuclear NMR experiments to obtain structural and dynamic information on proteins.
    Bermel W; Bertini I; Felli IC; Peruzzini R; Pierattelli R
    Chemphyschem; 2010 Feb; 11(3):689-95. PubMed ID: 20077554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical-shift anisotropy measurements of amide and carbonyl resonances in a microcrystalline protein with slow magic-angle spinning NMR spectroscopy.
    Wylie BJ; Sperling LJ; Frericks HL; Shah GJ; Franks WT; Rienstra CM
    J Am Chem Soc; 2007 May; 129(17):5318-9. PubMed ID: 17425317
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.