BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15840053)

  • 1. Functional and molecular characterization of a peritoneal dialysis model in the C57BL/6J mouse.
    Ni J; Cnops Y; Debaix H; Boisdé I; Verbavatz JM; Devuyst O
    Kidney Int; 2005 May; 67(5):2021-31. PubMed ID: 15840053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquaporin-1 in the peritoneal membrane: implications for peritoneal dialysis and endothelial cell function.
    Devuyst O; Ni J; Verbavatz JM
    Biol Cell; 2005 Sep; 97(9):667-73. PubMed ID: 16104840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum.
    Stoenoiu MS; Ni J; Verkaeren C; Debaix H; Jonas JC; Lameire N; Verbavatz JM; Devuyst O
    J Am Soc Nephrol; 2003 Mar; 14(3):555-65. PubMed ID: 12595490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between peritoneal transport characteristics and messenger RNA expression of aquaporin in the peritoneal dialysis effluent of CAPD patients.
    Szeto CC; Lai KB; Chow KM; Szeto CY; Li PK
    J Nephrol; 2005; 18(2):197-203. PubMed ID: 15931648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis.
    Ni J; Verbavatz JM; Rippe A; Boisdé I; Moulin P; Rippe B; Verkman AS; Devuyst O
    Kidney Int; 2006 May; 69(9):1518-25. PubMed ID: 16508653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mice that lack endothelial nitric oxide synthase are protected against functional and structural modifications induced by acute peritonitis.
    Ni J; Moulin P; Gianello P; Feron O; Balligand JL; Devuyst O
    J Am Soc Nephrol; 2003 Dec; 14(12):3205-16. PubMed ID: 14638919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of NO synthase isoforms in the peritoneum: implications for ultrafiltration failure in peritoneal dialysis.
    Devuyst O; Combet S; Cnops Y; Stoenoiu MS
    Nephrol Dial Transplant; 2001 Mar; 16(3):675-8. PubMed ID: 11239067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquaporin-1 in the peritoneal membrane: Implications for water transport across capillaries and peritoneal dialysis.
    Devuyst O; Ni J
    Biochim Biophys Acta; 2006 Aug; 1758(8):1078-84. PubMed ID: 16581016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of nitric oxide synthase reverses changes in peritoneal permeability in a rat model of acute peritonitis.
    Ferrier ML; Combet S; van Landschoot M; Stoenoiu MS; Cnops Y; Lameire N; Devuyst O
    Kidney Int; 2001 Dec; 60(6):2343-50. PubMed ID: 11737609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of anaesthesia on fluid and solute transport in a C57BL6 mouse model of peritoneal dialysis.
    Shin SK; Kamerath CD; Gilson JF; Leypoldt JK
    Nephrol Dial Transplant; 2006 Oct; 21(10):2874-80. PubMed ID: 16877489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphotericin B, mercury chloride and peritoneal transport in rabbits.
    Zweers MM; Douma CE; de Waart DR; Korevaar JC; Krediet RT; Struijk DG
    Clin Nephrol; 2001 Jul; 56(1):60-8. PubMed ID: 11499660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water channel AQP1, 3, and 4 in the human peritoneum and peritoneal dialysate.
    Akiba T; Ota T; Fushimi K; Tamura H; Hata T; Sasaki S; Marumo F
    Adv Perit Dial; 1997; 13():3-6. PubMed ID: 9360641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis.
    Combet S; Van Landschoot M; Moulin P; Piech A; Verbavatz JM; Goffin E; Balligand JL; Lameire N; Devuyst O
    J Am Soc Nephrol; 1999 Oct; 10(10):2185-96. PubMed ID: 10505696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glucose degradation products, glucose-containing dialysate and icodextrin on AQP1 and eNOS expression in cultured endothelial cells.
    Lin X; Amore A; Loiacono E; Balegno S; Manniello D; Peruzzi L; Camilla R; Minieri V; Daprà V; Qian J; Coppo R
    J Nephrol; 2009; 22(1):117-22. PubMed ID: 19229826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A detailed analysis of sodium removal by peritoneal dialysis: comparison with predictions from the three-pore model of membrane function.
    Aanen MC; Venturoli D; Davies SJ
    Nephrol Dial Transplant; 2005 Jun; 20(6):1192-200. PubMed ID: 15827048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of peritoneal water channel expression in rats].
    Hayakawa H
    Nihon Jinzo Gakkai Shi; 1996 Dec; 38(12):535-44. PubMed ID: 9014472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume.
    Wang T; Cheng HH; Heimbürger O; Waniewski J; Bergström J; Lindholm B
    Kidney Int; 1998 Feb; 53(2):496-502. PubMed ID: 9461112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Endothelial Cell-Specific AQP1 Knockout Mice Confirm the Crucial Role of Endothelial AQP1 in Ultrafiltration during Peritoneal Dialysis.
    Zhang W; Freichel M; van der Hoeven F; Nawroth PP; Katus H; Kälble F; Zitron E; Schwenger V
    PLoS One; 2016; 11(1):e0145513. PubMed ID: 26760974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sieving coefficients for small solutes during experimental peritoneal dialysis in rats.
    Park MS; Heimbürger O; Bergström J; Waniewski J; Werynski A; Lindholm B
    Blood Purif; 1995; 13(6):289-300. PubMed ID: 8821193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aristolochic acid nephropathy and the peritoneum: Functional, structural, and molecular studies.
    Gillerot G; Goffin E; Moulin P; Arlt VM; Phillips DH; Cosyns JP; Devuyst O
    Kidney Int; 2003 Nov; 64(5):1883-92. PubMed ID: 14531824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.