These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15840541)

  • 41. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments.
    Mench M; Renella G; Gelsomino A; Landi L; Nannipieri P
    Environ Pollut; 2006 Nov; 144(1):24-31. PubMed ID: 16516362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula.
    Paton GI; Viventsova E; Kumpene J; Wilson MJ; Weitz HJ; Dawson JJ
    Sci Total Environ; 2006 Feb; 355(1-3):106-17. PubMed ID: 15935449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Regulation of the biomass and activity of soil microorganisms by microfauna].
    Mamilov ASh; Byzov BA; Pokarzhevskiĭ AD; Zviagintsev DG
    Mikrobiologiia; 2000; 69(5):727-36. PubMed ID: 11315679
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Model for the study of the impact of atmospheric heavy metals on soil microbial biomass.
    Marchionni M; Benedetti A; Riccardi C; Villarini M
    Ann Chim; 2000; 90(11-12):715-21. PubMed ID: 11218259
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Leg deformities of oribatid mites as an indicator of environmental pollution.
    Eeva T; Penttinen R
    Sci Total Environ; 2009 Aug; 407(16):4771-6. PubMed ID: 19481780
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction.
    Mertens J; Luyssaert S; Verheyen K
    Environ Pollut; 2005 Nov; 138(1):1-4. PubMed ID: 16023913
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of land use on soil health indicators in peri-urban agriculture in the humid forest zone of southern cameroon.
    Monkiedje A; Spiteller M; Fotio D; Sukul P
    J Environ Qual; 2006; 35(6):2402-9. PubMed ID: 17071911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional microbial diversity of the railway track bed.
    Cederlund H; Thierfelder T; Stenström J
    Sci Total Environ; 2008 Jul; 397(1-3):205-14. PubMed ID: 18406446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter. A greenhouse study.
    Kumar GP; Yadav SK; Thawale PR; Singh SK; Juwarkar AA
    Bioresour Technol; 2008 Apr; 99(6):2078-82. PubMed ID: 17482809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater.
    Manzoor S; Shah MH; Shaheen N; Khalique A; Jaffar M
    J Hazard Mater; 2006 Sep; 137(1):31-7. PubMed ID: 16600476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new method to quantify the impact of soil carbon management on biophysical soil properties: the example of two apple orchard systems in New Zealand.
    Deurer M; Sivakumaran S; Ralle S; Vogeler I; McIvor I; Clothier B; Green S; Bachmann J
    J Environ Qual; 2008; 37(3):915-24. PubMed ID: 18453414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid.
    Kao PH; Huang CC; Hseu ZY
    Chemosphere; 2006 Jun; 64(1):63-70. PubMed ID: 16403552
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vitality fertilization of Scots pine stands growing along a gradient of heavy metal pollution: short-term effects on microbial biomass and respiration rate of the humus layer.
    Fritze H; Vanhala P; Pietikäinen J; Mälkönen E
    Anal Bioanal Chem; 1996 Mar; 354(5-6):750-5. PubMed ID: 15067486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Similarity of microbial and meiofaunal community analyses for mapping ecological effects of heavy-metal contamination in soil.
    Ellis RJ; Best JG; Fry JC; Morgan P; Neish B; Trett MW; Weightman AJ
    FEMS Microbiol Ecol; 2002 May; 40(2):113-22. PubMed ID: 19709218
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Levels of heavy metals pollution in different types of soil of central Greece.
    Golia EE; Dimirkou A; Mitsios IK
    Bull Environ Contam Toxicol; 2008 Mar; 80(3):206-10. PubMed ID: 18193140
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Status and fuzzy comprehensive assessment of combined heavy metal and organo-chlorine pesticide pollution in the Taihu Lake region of China.
    Shen G; Lu Y; Wang M; Sun Y
    J Environ Manage; 2005 Sep; 76(4):355-62. PubMed ID: 15946789
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metals distribution in soils around the cement factory in southern Jordan.
    Al-Khashman OA; Shawabkeh RA
    Environ Pollut; 2006 Apr; 140(3):387-94. PubMed ID: 16361028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of anthropogenic boundary depth in industrially polluted soil and semi-quantification of heavy metal loads using magnetic susceptibility.
    Blaha U; Appel E; Stanjek H
    Environ Pollut; 2008 Nov; 156(2):278-89. PubMed ID: 18538906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.