These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 15840648)
1. Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP. Hsiao VC; Tian R; Long H; Der Perng M; Brenner M; Quinlan RA; Goldman JE J Cell Sci; 2005 May; 118(Pt 9):2057-65. PubMed ID: 15840648 [TBL] [Abstract][Full Text] [Related]
2. Mild functional effects of a novel GFAP mutant allele identified in a familial case of adult-onset Alexander disease. Bachetti T; Caroli F; Bocca P; Prigione I; Balbi P; Biancheri R; Filocamo M; Mariotti C; Pareyson D; Ravazzolo R; Ceccherini I Eur J Hum Genet; 2008 Apr; 16(4):462-70. PubMed ID: 18197187 [TBL] [Abstract][Full Text] [Related]
3. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512 [TBL] [Abstract][Full Text] [Related]
4. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Tian R; Gregor M; Wiche G; Goldman JE Am J Pathol; 2006 Mar; 168(3):888-97. PubMed ID: 16507904 [TBL] [Abstract][Full Text] [Related]
5. Beneficial effects of curcumin on GFAP filament organization and down-regulation of GFAP expression in an in vitro model of Alexander disease. Bachetti T; Di Zanni E; Balbi P; Ravazzolo R; Sechi G; Ceccherini I Exp Cell Res; 2012 Sep; 318(15):1844-54. PubMed ID: 22705585 [TBL] [Abstract][Full Text] [Related]
6. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. Tang G; Perng MD; Wilk S; Quinlan R; Goldman JE J Biol Chem; 2010 Apr; 285(14):10527-37. PubMed ID: 20110364 [TBL] [Abstract][Full Text] [Related]
7. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Chen YS; Lim SC; Chen MH; Quinlan RA; Perng MD Exp Cell Res; 2011 Oct; 317(16):2252-66. PubMed ID: 21756903 [TBL] [Abstract][Full Text] [Related]
8. GFAP mutations in Alexander disease. Li R; Messing A; Goldman JE; Brenner M Int J Dev Neurosci; 2002; 20(3-5):259-68. PubMed ID: 12175861 [TBL] [Abstract][Full Text] [Related]
9. Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance. Tanaka KF; Takebayashi H; Yamazaki Y; Ono K; Naruse M; Iwasato T; Itohara S; Kato H; Ikenaka K Glia; 2007 Apr; 55(6):617-31. PubMed ID: 17299771 [TBL] [Abstract][Full Text] [Related]
10. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Sosunov AA; McKhann GM; Goldman JE Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321 [TBL] [Abstract][Full Text] [Related]
11. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. Pekny T; Faiz M; Wilhelmsson U; Curtis MA; Matej R; Skalli O; Pekny M APMIS; 2014 Jan; 122(1):76-80. PubMed ID: 23594359 [TBL] [Abstract][Full Text] [Related]
13. Effects of Alexander disease-associated mutations on the assembly and organization of GFAP intermediate filaments. Yang AW; Lin NH; Yeh TH; Snider N; Perng MD Mol Biol Cell; 2022 Jul; 33(8):ar69. PubMed ID: 35511821 [TBL] [Abstract][Full Text] [Related]
14. Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association. Perng MD; Wen SF; Gibbon T; Middeldorp J; Sluijs J; Hol EM; Quinlan RA Mol Biol Cell; 2008 Oct; 19(10):4521-33. PubMed ID: 18685083 [TBL] [Abstract][Full Text] [Related]
15. Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Yoshida T; Nakagawa M Neuropathology; 2012 Aug; 32(4):440-6. PubMed ID: 22118268 [TBL] [Abstract][Full Text] [Related]
16. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. Perng MD; Cairns L; van den IJssel P; Prescott A; Hutcheson AM; Quinlan RA J Cell Sci; 1999 Jul; 112 ( Pt 13)():2099-112. PubMed ID: 10362540 [TBL] [Abstract][Full Text] [Related]
17. Formation of GFAP cytoplasmic inclusions in astrocytes and their disaggregation by alphaB-crystallin. Koyama Y; Goldman JE Am J Pathol; 1999 May; 154(5):1563-72. PubMed ID: 10329608 [TBL] [Abstract][Full Text] [Related]
18. GFAP and its role in Alexander disease. Quinlan RA; Brenner M; Goldman JE; Messing A Exp Cell Res; 2007 Jun; 313(10):2077-87. PubMed ID: 17498694 [TBL] [Abstract][Full Text] [Related]
19. Redistribution of GFAP and alphaB-crystallin after thermal stress in C6 glioma cell line. Tseng WC; Lu KS; Lee WC; Chien CL J Biomed Sci; 2006 Sep; 13(5):681-94. PubMed ID: 16729237 [TBL] [Abstract][Full Text] [Related]
20. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. Tian R; Wu X; Hagemann TL; Sosunov AA; Messing A; McKhann GM; Goldman JE J Neuropathol Exp Neurol; 2010 Apr; 69(4):335-45. PubMed ID: 20448479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]