These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 15840707)

  • 21. Comparison of false discovery rate methods in identifying genes with differential expression.
    Qian HR; Huang S
    Genomics; 2005 Oct; 86(4):495-503. PubMed ID: 16054333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating p-values in small microarray experiments.
    Yang H; Churchill G
    Bioinformatics; 2007 Jan; 23(1):38-43. PubMed ID: 17077100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sample size calculation through the incorporation of heteroscedasticity and dependence for a penalized t-statistic in microarray experiments.
    Hirakawa A; Hamada C; Yoshimura I
    J Biopharm Stat; 2012; 22(2):260-75. PubMed ID: 22251173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mixture model for estimating the local false discovery rate in DNA microarray analysis.
    Liao JG; Lin Y; Selvanayagam ZE; Shih WJ
    Bioinformatics; 2004 Nov; 20(16):2694-701. PubMed ID: 15145810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Meta-analysis based on control of false discovery rate: combining yeast ChIP-chip datasets.
    Pyne S; Futcher B; Skiena S
    Bioinformatics; 2006 Oct; 22(20):2516-22. PubMed ID: 16908499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating effect sizes of differentially expressed genes for power and sample-size assessments in microarray experiments.
    Matsui S; Noma H
    Biometrics; 2011 Dec; 67(4):1225-35. PubMed ID: 21627629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting sample variability to enhance multivariate analysis of microarray data.
    Möller-Levet CS; West CM; Miller CJ
    Bioinformatics; 2007 Oct; 23(20):2733-40. PubMed ID: 17827205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unequal group variances in microarray data analyses.
    Demissie M; Mascialino B; Calza S; Pawitan Y
    Bioinformatics; 2008 May; 24(9):1168-74. PubMed ID: 18344518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved estimation of the noncentrality parameter distribution from a large number of t-statistics, with applications to false discovery rate estimation in microarray data analysis.
    Qu L; Nettleton D; Dekkers JC
    Biometrics; 2012 Dec; 68(4):1178-87. PubMed ID: 22551000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding sample size: what determines the required number of microarrays for an experiment?
    Jørstad TS; Langaas M; Bones AM
    Trends Plant Sci; 2007 Feb; 12(2):46-50. PubMed ID: 17229587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ensemble approach to microarray data-based gene prioritization after missing value imputation.
    Hua D; Lai Y
    Bioinformatics; 2007 Mar; 23(6):747-54. PubMed ID: 17267438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bayesian determination of threshold for identifying differentially expressed genes in microarray experiments.
    Chen J; Sarkar SK
    Stat Med; 2006 Sep; 25(18):3174-89. PubMed ID: 16345048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying differentially expressed genes using false discovery rate controlling procedures.
    Reiner A; Yekutieli D; Benjamini Y
    Bioinformatics; 2003 Feb; 19(3):368-75. PubMed ID: 12584122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays.
    Barrera L; Benner C; Tao YC; Winzeler E; Zhou Y
    BMC Bioinformatics; 2004 Apr; 5():42. PubMed ID: 15099405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Gibbs sampler for the identification of gene expression and network connectivity consistency.
    Brynildsen MP; Tran LM; Liao JC
    Bioinformatics; 2006 Dec; 22(24):3040-6. PubMed ID: 17060361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of the differentially expressed genes in microarray experiments using local FDR.
    Aubert J; Bar-Hen A; Daudin JJ; Robin S
    BMC Bioinformatics; 2004 Sep; 5():125. PubMed ID: 15350197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data.
    Teschendorff AE; Wang Y; Barbosa-Morais NL; Brenton JD; Caldas C
    Bioinformatics; 2005 Jul; 21(13):3025-33. PubMed ID: 15860564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apparently low reproducibility of true differential expression discoveries in microarray studies.
    Zhang M; Yao C; Guo Z; Zou J; Zhang L; Xiao H; Wang D; Yang D; Gong X; Zhu J; Li Y; Li X
    Bioinformatics; 2008 Sep; 24(18):2057-63. PubMed ID: 18632747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sample size calculations based on ranking and selection in microarray experiments.
    Matsui S; Zeng S; Yamanaka T; Shaughnessy J
    Biometrics; 2008 Mar; 64(1):217-26. PubMed ID: 17680829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of differentially expressed genes and false discovery rate in microarray studies.
    Gusnanto A; Calza S; Pawitan Y
    Curr Opin Lipidol; 2007 Apr; 18(2):187-93. PubMed ID: 17353668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.